Skip to main content
Log in

Driving Factors Behind Litter Decomposition and Nutrient Release at Temperate Forest Edges

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Forest edges have become important features in landscapes worldwide. Edges are exposed to a different microclimate and higher atmospheric nitrogen (N) deposition compared to forest interiors. It is, however, unclear how microclimate and elevated N deposition affect nutrient cycling at forest edges. We studied litter decomposition and release of N, phosphorus (P), total cations (TC) and C/N ratios during 18 months via the litterbag technique along edge-to-interior transects in two oak (Quercus robur L.) and two pine (Pinus nigra ssp. laricio Maire and ssp. nigra Arnold) stands in Belgium. Furthermore, the roles of edge conditions (microclimate, atmospheric deposition, soil fauna and soil physicochemical conditions), litter quality and edge decomposer community were investigated as underlying driving factors for litter decomposition. Litter of edge and interior was interchanged (focusing on the influence of edge conditions and litter quality) and placed in open-top chamber (OTC), which create an edge (warmer) microclimate. As the decomposer macrofauna was more abundant at the edge than in the interior, the OTCs were used to isolate the effects of warming versus soil fauna. Oak litter at the edge lost 87 and 37% more mass than litter in the interior. We demonstrated an edge effect on litter decomposition and nutrient release, caused by an interplay of edge conditions (atmospheric deposition of N and TC, soil pH and C/N ratio), litter quality and soil fauna. Consequently, edge effects must be accounted for when quantifying ecosystem processes, such as litter decomposition and nutrient cycling in fragmented landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aerts R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–24.

    Article  Google Scholar 

  • Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, Valášková V. 2012. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–8.

    Article  CAS  Google Scholar 

  • Bärlocher F. 2005. Leaf mass loss estimated by litter bag technique. In: Graça MAS, Bärlocher F, Gessner MO, Eds. Methods to study litter decomposition. Netherlands: Springer. pp 37–42.

    Chapter  Google Scholar 

  • Berg B, McClaugherty C. 2003. Plant litter—decomposition, humus formation, carbon sequestration. Berlin: Springer.

    Google Scholar 

  • Berg B, Staaf H. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol Bull 33:163–78.

    CAS  Google Scholar 

  • Chen J, Franklin JF, Spies TA. 1995. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5:74–86.

    Article  Google Scholar 

  • Cline LC, Zak DR. 2014. Dispersal limitation structures fungal community assembly in a long-term glacial chronosequence. Environ Microbiol 16:1538–48.

    Article  PubMed  CAS  Google Scholar 

  • Conn C, Dighton J. 2000. Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–96.

    Article  CAS  Google Scholar 

  • Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K. 2014. Tree species is the major factor explaining C: N ratios in European forest soils. For Ecol Manag 311:3–16.

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegem P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988–95.

    Article  Google Scholar 

  • Crockatt ME, Bebber DP. 2015. Edge effects on moisture reduce wood decomposition rate in a temperate forest. Glob Change Biol 21:698–707.

    Article  Google Scholar 

  • David JF. 2014. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–18.

    Article  CAS  Google Scholar 

  • David JF, Handa IT. 2010. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol Rev 85:881–95.

    PubMed  Google Scholar 

  • De Frenne P, de Schrijver A, Graae BJ, Gruwez R, Tack W, Vandelook F, Hermy M, Verheyen K. 2010. The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants. Ecol Res 25:163–71.

    Article  Google Scholar 

  • De Schrijver A, Devlaeminck R, Mertens J, Wuyts K, Hermy M, Verheyen K. 2007. On the importance of incorporating forest edge deposition for evaluating exceedance of critical pollutant loads. Appl Veg Sci 10:293–8.

    Article  Google Scholar 

  • De Smedt P, Wuyts K, Baeten L, De Schrijver A, Proesmans W, De Frenne P, Ampoorter E, Remy E, Gijbels M, Hermy M, Bonte D. 2016. Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edge-to-interior gradients. Insect Conserv Divers 9:456–69.

    Article  Google Scholar 

  • Decocq G, Andrieu E, Brunet J, Chabrerie O, De Frenne P, De Smedt P, Decocnhat M, Diekmann M, Ehrmann S, Giffard B, Goriz Mifsud E, Hansen K, Hermy M, Kolb A, Lenoir J, Liira J, Moldan F, Prokofieva I, Rosenqvist L, Varela E, Valdes A, Verheyen K, Wulf M. 2016. Ecosystem services from small forest patches in agricultural landscapes. Curr For Rep 2:30–44.

    Google Scholar 

  • Didham RK. 1998. Altered leaf-litter decomposition rates in tropical forest fragments. Oecologia 116:397–406.

    Article  PubMed  Google Scholar 

  • Draaijers GPJ, Ivens WPMF, Bleuten W. 1988. Atmospheric deposition in forest edges measured by monitoring canopy throughfall. Water Air Soil Pollut 42:129–36.

    Article  CAS  Google Scholar 

  • Edwards D, Hassall M, Carmenta R, Derhé MA, Moss A. 2010. Predicting the effect of climate change on aggregation behaviour in four species of terrestrial isopods. Behaviour 147:151–64.

    Article  Google Scholar 

  • Gerlach J, Samways M, Pryke J. 2013. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–50.

    Article  Google Scholar 

  • González G, Gould WA, Hudak AT, Hollingsworth TN. 2008. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. AMBIO J Hum Environ 37:588–97.

    Article  Google Scholar 

  • Harper K, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA. 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–82.

    Article  Google Scholar 

  • Hattenschwiler S, Gasser P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci 102:1519–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbst M, Roberts JM, Rosier PTW, Taylor ME, Gowing DJ. 2007. Edge effects and forest water use: a field study in a mixed deciduous woodland. For Ecol Manag 250:176–86.

    Article  Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Kardewski P. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–97.

    Article  PubMed  Google Scholar 

  • Hofmeister J, Hošek J, Brabec M, Hedl R, Modry M. 2013. Strong influence of long-distance edge effect on herb-layer vegetation in forest fragments in an agricultural landscape. Perspect Plant Ecol Evol Syst 15:293–303.

    Article  Google Scholar 

  • Hopkin SP, Read HJ. 1992. The biology of millipedes. Oxford: Oxford University Press.

    Google Scholar 

  • Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM. 2009. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem 41:2122–30.

    Article  CAS  Google Scholar 

  • Kime RD. 1992. On abundance of West-European millipedes (Diplopoda). In: Proceedings of the 8th International Congress of Myriapodology. Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 10. pp 393–9.

  • Malmivaara-Lämsä M, Hamberg L, Haapamäki E, Liski J, Kotze DJ, Lehvävirta S, Fritze H. 2008. Edge effects and trampling in boreal urban forest fragments—impacts on the soil microbial community. Soil Biol Biochem 40:1612–21.

    Article  CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321:684–6.

    Article  PubMed  CAS  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Agren GI. 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91.

    Article  PubMed  CAS  Google Scholar 

  • Marklein AR, Winbourne JB, Enders SK, Gonzalez DJX, van Huysen TL, Izquierdo JE, Light DR, Liptzin D, Miller KE, Morford SL, Norton RA, Houlton BZ. 2016. Mineralization ratios of nitrogen and phosphorus from decomposing litter in temperate versus tropical forests. Glob Ecol Biogeogr 25:335–46.

    Article  Google Scholar 

  • Matlack GR. 1993. Microenvironment variation within and among forest edge sites in the Eastern United States. Biol Conserv 66:185–94.

    Article  Google Scholar 

  • Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A. 2014. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A. 2012. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93:770–82.

    Article  PubMed  Google Scholar 

  • Moreno ML, Bernaschini ML, Pérez-Harguindeguy N, Valladares G. 2014. Area and edge effects on leaf-litter decomposition in a fragmented subtropical dry forest. Acta Oecol 60:26–9.

    Article  Google Scholar 

  • Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–31.

    Article  Google Scholar 

  • R Development Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Remy E, Wuyts K, Boeckx P, Ginzburg S, Gundersen P, Demey A, Van Den Bulcke J, Van Acker J, Verheyen K. 2016. Strong gradients in nitrogen and carbon stocks at temperate forest edges. For Ecol Manag 376:45–58.

    Article  Google Scholar 

  • Ritter E, Dalsgaard L, Einhorn KS. 2005. Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For Ecol Manag 206:15–23.

    Article  Google Scholar 

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD. 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem 49:124–31.

    Article  CAS  Google Scholar 

  • Rovira P, Rovira R. 2010. Fitting litter decomposition datasets to mathematical curves: towards a generalised exponential approach. Geoderma 155:329–43.

    Article  Google Scholar 

  • Sariyildiz T. 2008. Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in northeast Turkey. Ecosystems 11:841–53.

    Article  Google Scholar 

  • Slade EM, Riutta T. 2012. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl Ecol 13:423–31.

    Article  Google Scholar 

  • Spangenberg A, Kölling C. 2004. Nitrogen deposition and nitrate leaching at forest edges exposed to high ammonia emissions in Southern Bavaria. Water Air Soil Pollut 152:233–55.

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry. Princeton: Princeton University Press.

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J Dairy Sci 74:3583–97.

    Article  PubMed  Google Scholar 

  • Vasconcelos HL, Laurance WF. 2005. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456–62.

    Article  PubMed  Google Scholar 

  • Vasconcelos HL, Luizão FJ. 2004. Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol Appl 14:884–92.

    Article  Google Scholar 

  • World Reference Base (WRB) for Soil Resources. 2014. update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Wuyts K, De Schrijver A, Staelens J, Gielis L. Vandenbruwane J, Verheyen K. 2008. Comparison of forest edge effects on throughfall deposition in different forest types. Environ Pollut 156:854–61.

    Article  PubMed  CAS  Google Scholar 

  • Wuyts K, de Schrijver A, Staelens J, Van Nevel L, Adriaenssens S, Verheyen K. 2011. Soil inorganic N leaching in edges of different forest types subject to high N deposition loads. Ecosystems 14:818–34.

    Article  CAS  Google Scholar 

  • Wuyts K, De Schrijver A, Staelens J, Verheyen K. 2013. Edge effects on soil acidification in forests on sandy soils under high deposition load. Water Air Soil Pollut 224:1–14.

    Article  CAS  Google Scholar 

  • Wuyts K, De Schrijver A, Vermeiren F, Verheyen K. 2009. Gradual forest edges can mitigate edge effects on throughfall deposition if their size and shape are well considered. For Ecol Manag 257:679–87.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Research Foundation—Flanders (FWO, project G046413N). P.D.S. holds a doctoral fellowship of the Research Foundation—Flanders (FWO). We would like to thank Luc Willems and Greet De Bruyn for the chemical analyses of all litter samples. Furthermore, we would like to thank Kris Ceunen, Safaa Wasof and Matthias Minnebo for their help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyn Remy.

Additional information

Author contributions

ER performed the research, analysed the data and wrote the paper; KW, PB and KV designed the study; LVN and PDS contributed new methods and models.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remy, E., Wuyts, K., Van Nevel, L. et al. Driving Factors Behind Litter Decomposition and Nutrient Release at Temperate Forest Edges. Ecosystems 21, 755–771 (2018). https://doi.org/10.1007/s10021-017-0182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0182-4

Keywords

Navigation