Skip to main content
Log in

Stability analysis of double-diffusive convection of Rivlin-Ericksen elastico-viscous nanofluid saturating a porous medium: a revised model

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

In the present paper we study the stability analysis of double-diffusive convection in a horizontal layer of an elastico-viscous nanofluid in a porous medium. The Rivlin-Ericksen fluid model is employed to describe the rheological behavior of the nanofluid. The dispersion relation describing the effect of various parameters is obtained by applying normal modes method and by using linear stability analysis. In this model we assume that the nanoparticle concentration flux is zero on the boundaries and we can give the values of temperature and concentration at the boundaries. The assumed boundary conditions neutralize the possibility of oscillatory convection and only stationary convection occurs. For stationary convection; it is observed that the Rivlin-Ericksen elastico-viscous nanofluid fluid behaves like an ordinary Newtonian nanofluid. The solutal-Rayleigh Number, thermo-nanofluid Lewis number, thermo-solutal Lewis number, Soret parameter and Dufour parameter have stabilizing effect on the stationary convection. A very good agreement is found between the present paper and earlier published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Wave number

c:

Specific heat

d:

Thickness of the horizontal layer

DB :

Diffusion coefficient (m2/s)

DT :

Thermophoretic diffusion coefficient

F:

Kinematic visco-elasticity parameter

g:

Acceleration due to gravity (m/s2)

g :

Gravitational acceleration vector

k:

Thermal conductivity (w/mK)

Le:

Thermosolutal Lewis number

Ln:

Thermo-nanofluid Lewis number

NA :

Modified diffusivity ratio

NB :

Modified particle-density ratio

N CT :

Soret parameter

N TC :

Dufour parameter

p:

Pressure (Pa)

Pr:

Prandtl number

q :

Darcy velocity vector (m/s)

R D :

Thermal Darcy-Rayleigh number

(R D ) C :

Critical Thermal Darcy-Rayleigh number

Rm:

Basic-density Rayleigh number

Rn:

Concentration Rayleigh number

Rs:

Solutal Rayleigh number

t:

Time (s)

T:

Temperature (K)

(u,v,w):

Darcy velocity components

(x,y,z):

Space co-ordinates (m)

α T :

Solute volumetric coefficient

α C :

Thermal volumetric coefficient (1/K)

φ:

Nanoparticles volume fraction

κ:

Thermal diffusivity

\({{\kappa }_{m}}\) :

Effective thermal diffusivity of porous medium (m/s2)

μ:

Viscosity of the fluid(Ns/m2)

μ’:

Viscoelasticity

ν:

Kinematic viscosity

\({{\nu }^{'}}\) :

Kinematic viscoelasticity

ρ:

Density of fluid (kg/m3)

\({{\rho }_{p}}\) :

Nanoparticle mass density (kg/m3)

ω:

Growth rate of disturbances

’:

Non-dimensional variables

’ ’:

Perturbed quantity

p:

Particle

f:

Fluid

b:

Basic state

0:

Lower boundary

1:

Upper boundary

References

  1. Alloui Z, Vasseur P, Reggio M (2011) Natural convection of nanofluids in a shallow cavity heated from below. Int J Therm Sci 50:385–393

    Article  Google Scholar 

  2. Bhatia PK, Steiner JM (1973) Thermal instability of visco-elastic fluid in hydromagnetics. J Math Anal Appl 41:271–282

  3. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  4. Chand R, Rana GC (2012) On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. Int J Heat Mass Transf 55:5417–5424

    Article  Google Scholar 

  5. Chand R, Rana GC (2012) Oscillating convection of nanofluid in porous medium. Transp Porous Med 95:269–284

    Article  MathSciNet  Google Scholar 

  6. Chand R, Rana GC (2012) Thermal convection of Rivlin-Ericksen elastic-viscous nanofluid saturated in porous medium. J Fluids Eng 134:121203

    Article  Google Scholar 

  7. Chand R, Rana GC (2012) Dufour and Soret effects on the thermosolutal instability of Rivlin-Ericksen elastico-viscous fluid in porous medium. Z Naturforsch A 67a:685 – 691

    Google Scholar 

  8. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publication, New York

    MATH  Google Scholar 

  9. Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of Non-Newtonian flows, vol 66. Conference Publication, San Francisco, pp 99–105 (ASME FED, 231/MD)

    Google Scholar 

  10. El-Sayed MF, Eldabe NT, Haroun MH, Mostafa DM (2012) Non-linear Kelvin Helmholtz instability of Rivlin-Ericksen viscoelastic electrified fluid particle mixtures saturating porous medium. Eur Phys J Plus 127:29

    Article  Google Scholar 

  11. Goyal M, Bhargava R (2014) Finite element solution of double diffusive boundary layer flow of viscoelastic nanofluids over stretching sheet. Comput Math Math Phys 54:848–863

    Article  MathSciNet  Google Scholar 

  12. Gupta U, Sharma G (2007) On Rivlin-Erickson elastico-viscous fluid heated and soluted from below in the presence of compressibility, rotation and hall currents. J Appl Math Comput 25:51–66

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuznetsov AV, Nield DA (2010) Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp Porous Media 83:425–436

    Article  Google Scholar 

  14. Kuznetsov AV, Nield DA (2010) The onset of double-diffusive nanofluid convection in a layer of saturated porous medium. Transp Porous Media 85:941–951

    Article  MathSciNet  Google Scholar 

  15. Nield DA, Kuznetsov AV (2009) Thermal instability in a porous medium layer saturated by a nanofluid. Int J Heat Mass Transf 52:5796–5801

    Article  MATH  Google Scholar 

  16. Nield DA, Kuznetsov AV (2011) The onset of double-diffusive convection in a nanofluid layer. Int J Heat Fluid Flow 32:771–776

    Article  Google Scholar 

  17. Nield DA, Kuznetsov AV (2014) Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int J Heat Mass Transf 68:211–214

    Article  Google Scholar 

  18. Oldroyd JG (1958) Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc Roy Soc (London) A245:278–286

    Article  MathSciNet  Google Scholar 

  19. Rana GC, Kumar S (2010) Thermal instability of Rivlin-Ericksen elastico-viscous rotating fluid permeated with suspended particles and variable gravity field in porous medium. Studia Geotechnica et Mechanica XXXII:39–54

    Google Scholar 

  20. Rana GC, Thakur RC, Kango SK (2014) On the onset of thermosolutal instability in a layer of an elastico-viscous nanofluid in porous medium. FME Trans 42:1–9

    Article  Google Scholar 

  21. Rana GC, Thakur RC, Kango SK (2014) On the onset of double-diffusive convection in a layer of nanofluid under rotation saturating a porous medium. J Porous Media 17:657–667

    Article  Google Scholar 

  22. Rivlin RS, Ericksen JL (1955) Stress deformation relations for isotropic materials. J Ration Mech Anal 4:323–334

    MATH  MathSciNet  Google Scholar 

  23. Sharma V, Rana GC (1999) The instability of streaming Rivlin-Ericksen fluids in porous medium in hydromagnetics. J Indian Acad Math 21:121–133

    MATH  MathSciNet  Google Scholar 

  24. Sharma V, Rana GC (2003) Thermosolutal instability of Rivlin-Ericksen rotating fluid in the presence of magnetic field and variable gravity field in porous medium. Proc Nat Acad Sci India 73:93–111

    MATH  Google Scholar 

  25. Sheu LJ (2011) Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. Transp Porous Med 88:461–477

    Article  MathSciNet  Google Scholar 

  26. Tzou DY (2008) Thermal instability of nanofluids in natural convection. Int J Heat Mass Transf 51:2967–2979

    Article  MATH  Google Scholar 

  27. Wang S, Tan W (2011) Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium studied. Int J Heat Fluid Flow 33:88–94

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the learned referee for their valuable comments and suggestions for the improvement of quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, G., Chand, R. Stability analysis of double-diffusive convection of Rivlin-Ericksen elastico-viscous nanofluid saturating a porous medium: a revised model. Forsch Ingenieurwes 79, 87–95 (2015). https://doi.org/10.1007/s10010-015-0190-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-015-0190-5

Keywords

Navigation