Skip to main content
Log in

Kinetics of island growth in the framework of “planar diffusion zones” and “3D nucleation and growth” models for electrodeposition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the electrochemical deposition of thin films, the measurement of the current-time curve does not allow for a direct determination of the nucleus growth law, electrode surface coverage, and mean film thickness. In this work, we present a theoretical approach suitable to gain insight into these quantities from the knowledge of nucleation density, solution parameters, and current-time behavior. The model applies to both isotropic and anisotropic growth rates of nuclei and a study on the effect of nucleus shape and aspect ratio on the kinetics is presented. Computer simulations and experimental results from literature are also discussed in the framework of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nasirpouri F, (2017) Electrodeposition of nanostructured materials. Springer International Publishing

  2. Guo L, Oskam G, Radisic A, Hoffmann PM, Searson PC (2011) Island growth in electrodeposition. J Phys D Appl Phys 44(44):443001

    Article  CAS  Google Scholar 

  3. Budevski E, Staikov G, Lorenz WJ, (1996) Electrochemical phase formation and growth. VCH

  4. Milchev A, Heerman L (2003) Electrochemical nucleation and growth of nano- and microparticles: some theoretical and experimental aspects. Electrochim Acta 48(20–22):2903–2913

    Article  CAS  Google Scholar 

  5. Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12

    Article  CAS  Google Scholar 

  6. Bosco E, Rangarajan S (1982) Electrochemical phase formation (ECPF) and macrogrowth part I: hemispherical models. J Electroanal Chem 134(2):213–224

    Article  CAS  Google Scholar 

  7. Bosco E, Rangarajan S (1982) Electrochemical phase formation (ECPF) and macrogrowth part II: two-rate models. J Electroanal Chem 134(2):225–241

    Article  CAS  Google Scholar 

  8. Gunawardena G, Hills G, Montenegro I (1982) Electrochemical nucleation: part II. The electrodeposition of silver on vitreous carbon. J Electroanal Chem Interfacial Electrochem 138(2):241–254

    Article  CAS  Google Scholar 

  9. Scharifker BR, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  10. Ji C, Oskam G, Searson PC (2001) Electrochemical nucleation and growth of copper on Si(111). Surf Sci 492(1–2):115–124

    Article  CAS  Google Scholar 

  11. Fardi-Ilkhchy A, Nasirpouri F, Vázquez M, Palmero EM (2017) Electrochemical nucleation and growth of Fe, Pt and Fe–Pt on n-type Si (001). Prot Met Phys Chem Surf 53(1):57–67

    Article  CAS  Google Scholar 

  12. Salinas DR, Cobo EO, Garcı́a SG, Bessone JB (1999) Early stages of mercury electrodeposition on HOPG. J Electroanal Chem 470(2):120–125

    Article  CAS  Google Scholar 

  13. Gloaguen F, Léger J, Lamy C, Marmann A, Stimming U, Vogel R (1999) Platinum electrodeposition on graphite: electrochemical study and STM imaging. Electrochim Acta 44(11):1805–1816

    Article  CAS  Google Scholar 

  14. Floate S, Hyde M, Compton RG (2002) Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound. J Electroanal Chem 523(1–2):49–63

    Article  CAS  Google Scholar 

  15. Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S (2015) Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: kinetic modeling and implications for an easy to handle platform for gas sensing device. Electrochim Acta 157:115–124

    Article  CAS  Google Scholar 

  16. Hriban C, Brinza F, Sulitanu N (2008) Nucleation mechanism of Fe nanoclusters inside of membranes nanopores. J Optoelectron Adv Mater 10(12):3487–3491

    CAS  Google Scholar 

  17. Grubač Z, Metikoš-Huković M (1998) Nucleation and growth of anodic oxide films on bismuth. Electrochim Acta 43(21–22):3175–3181

    Article  Google Scholar 

  18. Hwang BJ, Santhanam R, Lin YL (2001) Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochim Acta 46(18):2843–2853

    Article  CAS  Google Scholar 

  19. Tamburri E, Orlanducci S, Toschi F, Terranova ML, Passeri D (2009) Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth Met 159(5–6):406–414

    Article  CAS  Google Scholar 

  20. Fabricius G, Kontturi K, Sundholm G (1994) Influence of thiourea on the nucleation of copper from acid sulphate solutions. Electrochim Acta 39(16):2353–2357

    Article  CAS  Google Scholar 

  21. Bonou L, Eyraud M, Crousier J (1994) Nucleation and growth of copper on glassy carbon and steel. J Appl Electrochem 24(9):906–910

    Article  CAS  Google Scholar 

  22. Ortega JM (2000) Electrodeposition of copper on poly(o-aminophenol) modified platinum electrode. Thin Solid Films 360(1–2):159–165

    Article  CAS  Google Scholar 

  23. Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47(18):2901–2912

    Article  CAS  Google Scholar 

  24. Kolmogorov AN (1937) On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Math Ser 1:355–359

    Google Scholar 

  25. Avrami M (1939) Kinetics of Phase Change. I General Theory. J Chem Phys 7(12):1103–1112; (1940) Kinetics of Phase Change. II transformation-time relations for random distribution of nuclei, ibid. 8(2):8212–224; (1941) Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, ibid. 9(2):177–184

  26. Johnson W, Mehl R (1939) Reaction kinetics in process of nucleation and growth. Trans Metall AIME 135:416–458

    Google Scholar 

  27. Fanfoni M, Tomellini M (1998) The Johnson-Mehl-Avrami-Kohnogorov model: a brief review. Il Nuovo Cimento D 20(7–8):1171–1182

    Article  Google Scholar 

  28. Scharifker BR, Mostany J, Serruya A (1992) On the spatial distribution of nuclei on electrode surfaces. Electrochim Acta 37(13):2503–2510

    Article  CAS  Google Scholar 

  29. Mazaira D, Borràs C, Mostany J, Scharifter BR (2009) Three-dimensional nucleation with diffusion-controlled growth: simulation of hierarchical diffusion zones overlap. J Electroanal Chem 631(1–2):22–28

    Article  CAS  Google Scholar 

  30. Matthijs E, Langerock S, Michailova E, Heerman L (2004) The potentiostatic transient for 3D nucleation with diffusion-controlled growth: theory and experiment for progressive nucleation. J Electroanal Chem 570(1):123–133

    Article  CAS  Google Scholar 

  31. Scharifker BR, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth: part I. Number density of active sites and nucleation rates per site. J Electroanal Chem Interfacial Electrochem 177(1–2):13–23

    Article  CAS  Google Scholar 

  32. Heerman L, Matthijs E, Langerock S (2001) The concept of planar diffusion zones. Theory of the potentiostatic transient for multiple nucleation on active sites with diffusion-controlled growth. Electrochim Acta 47(6):905–911

    Article  CAS  Google Scholar 

  33. Bobbert PA, Wind MM, Vlieger J (1987) Diffusion to an assembly of slowly growing particles on a substrate. Physica A 146(1–2):69–88

    Article  Google Scholar 

  34. Sluyters-Rehbach M, Wijenberg JHOJ, Bosco E, Sluyters JH (1987) The theory of chronoamperometry for the investigation of electrocrystallization: mathematical description and analysis in the case of diffusion-controlled growth. J Electroanal Chem Interfacial Electrochem 236(1–2):1–20

    Article  CAS  Google Scholar 

  35. Heerman L, Tarallo A (1999) Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth. J Electroanal Chem 470(1):70–76

    Article  CAS  Google Scholar 

  36. Fletcher S, Matthews DB (1981) A new model for the nucleation and growth of thick polycrystal films. I Calculation of volume transforms. J Appl Electrochem 11(1):1–6

    Article  Google Scholar 

  37. Tomellini M (2012) Kinetics of dissolution-precipitation reaction at the surface of small particles: modelling and application. J Mater Sci 47(2):804–814

    Article  CAS  Google Scholar 

  38. Alekseechkin NV (2000) On calculating volume fractions of competing phases. J Phys Condens Matter 12(43):9109–9122

    Article  CAS  Google Scholar 

  39. Alekseechkin NV (2011) Extension of the Kolmogorov–Johnson–Mehl–Avrami theory to growth laws of diffusion type. J Non-Cryst Solids 357(16–17):3159–3167

    Article  CAS  Google Scholar 

  40. Tomellini M (2016) Modeling the kinetics of consecutive phase transitions in the solid state. J Mater Sci 51(2):809–821

    Article  CAS  Google Scholar 

  41. Isaev VA, Baraboshkin AN (1994) Three-dimensional electrochemical phase formation. J Electroanal Chem 377(1–2):33–37

    Article  CAS  Google Scholar 

  42. Ferenc JS, Néda Z (2007) On the size distribution of Poisson Voronoi cells. Physica A 385(2):518–526

    Article  CAS  Google Scholar 

  43. Farjas J, Roura P (2008) Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: grain size distribution in crystallization. Phys Rev B 78(14):144101

    Article  CAS  Google Scholar 

  44. Tomellini M (2017) Phase transformation kinetics of Voronoi cells in space tessellation governed by the Kolmogorov–Johnson–Mehl–Avrami model. Phys Lett A 381(12):1067–1075

    Article  CAS  Google Scholar 

  45. Pinho CMCT, De Carvalho JRFG (1986) Diffusion around oblate ellipsoids—a study on the influence of particle shape on the rate of particle consumption in fluid-particle processes. Int J Heat Mass Transf 29(10):1605–1607

    Article  Google Scholar 

  46. Bobbert PA, Wind MM, Vlieger J (1987) Diffusion to a slowly growing truncated sphere on a substrate. Physica A 141(1):58–72

    Article  Google Scholar 

  47. Branco PD, Mostany J, Borrás C, Scharifker BR (2009) The current transient for nucleation and diffusion-controlled growth of spherical caps. J Solid State Electrochem 13(4):565–571

    Article  CAS  Google Scholar 

  48. Branco PD, Saavedra K, Palomar-Pardavé M, Borrás C, Mostany J, Scharifker BR (2016) Nucleation kinetics and contact angles of silver clusters electrodeposited on indium tin oxide surfaces. J Electroanal Chem 765:140–148

    Article  CAS  Google Scholar 

  49. Guo L, Searson PC (2007) Simulations of island growth and island spatial distribution during electrodeposition. Electrochem Solid State Lett 10(7):D76–D78

    Article  CAS  Google Scholar 

  50. Fransaer JL, Penner RM (1999) Brownian dynamics simulation of the growth of metal nanocrystal ensembles on electrode surfaces from solution. I. Instantaneous nucleation and diffusion-controlled growth. J Phys Chem B 103(36):7643–7653

    Article  CAS  Google Scholar 

  51. Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2):238–242

    Article  CAS  PubMed  Google Scholar 

  52. Grujicic D, Pesic B (2005) Reaction and nucleation mechanisms of copper electrodeposition from ammonical solutions on vitreous carbon. Electrochim Acta 50(22):4426–4443

    Article  CAS  Google Scholar 

  53. Tomellini M, Fanfoni M (1997) Kinetics of clustering on surfaces in: Monograph on Chemistry for the 21st Century:Interfacial Science, Roberts MW (ed), Blakwell Science, chapter 6

  54. Palomar-Pardave´ M, Scharifker BR, Arce EM, Romero-Romo M (2005) Nucleation and diffusion-controlled growth of electroactive centers: reduction of protons during cobalt electrodeposition. Electrochim Acta 50(24):4736–4745

    Article  CAS  Google Scholar 

  55. Tomellini M (2018) Spatial distribution of nuclei in progressive nucleation: modeling and application. Physica A 496:481–494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted with Dr. E. Tamburri for the helpful discussions and the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tomellini.

Appendix

Appendix

Let Q be a point at height h from the electrode surface and O its projection on the electrode surface. The area of the capture zone of point Q for nuclei born at time t < t is equal to πr(t, t)2 where \( r\left(t,{t}^{\prime}\right)\equiv \overline{ON} \) and the point N, on the electrode surface, is such that a nucleus born at N will reach point Q at time t (Fig. 10). Since the points on the nucleus surface satisfy the equation, \( \frac{x^2+{y}^2}{A^2\left(t-{t}^{\prime}\right)}+\frac{z^2}{B^2\left(t-{t}^{\prime}\right)}=1 \), we get

$$ \frac{r{\left(t,{t}^{\prime}\right)}^2}{A^2\left(t-{t}^{\prime}\right)}+\frac{h^2}{B^2\left(t-{t}^{\prime}\right)}=1, $$
(21)

namely

$$ r{\left(t,{t}^{\prime}\right)}^2={A}^2\left(t-{t}^{\prime}\right)-\frac{h^2}{\alpha^2}, $$
(22)

where \( \alpha =\frac{B}{A} \). Since r(t, t)2 > 0 and \( {t}^{\prime }<{t}_{\mathrm{mx}}^{\prime }=t-\frac{h^2}{A^2{\alpha}^2}=t-\frac{h^2}{B^2} \), ξc(h, t) is eventually computed by summing over the population of nuclei,

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=H\left({t}_{\mathrm{mx}}^{\hbox{'}}\right)\pi {\int}_0^{t_{\mathrm{mx}}^{\hbox{'}}}r{\left(t,{t}^{\prime}\right)}^2\overset{\cdot }{N}\left({t}^{\prime}\right)\mathrm{d}{t}^{\prime}\kern3em =H\left({t}_{\mathrm{mx}}^{\hbox{'}}\right)\pi {\int}_0^{t-\frac{h^2}{B^2}}\left({A}^2\left(t-{t}^{\prime}\right)-\frac{h^2}{\alpha^2}\right)\overset{\cdot }{N}\left({t}^{\prime}\right)\mathrm{d}{t}^{\prime }. $$
(23)
Fig. 10
figure 10

Illustration of the “capture zone” method for ellipsoidal nucleus. \( \overline{ON} \) is the radius of the capture zone for point Q. Nuclei located at distance \( d>\overline{ON} \) are unable to transform Q up to time t. In the framework of the two-rate approach of [7], the capture zone (red disk) is located at height h and is related to the radial growth rate of the nuclei, pr

For site-saturation nucleation Eq. 23 gives Eq. 14:

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=\pi {N}_0{A}^2t\left(1-\frac{h^2}{B^2t}\right)H\left(1-\frac{h^2}{B^2t}\right). $$
(24)

In what follows, we illustrate the two-rate model of [7]. In this method, growth rates pr and ph are defined for “on-plane” and “normal“directions, respectively. These quantities provide the time dependence of the coordinates, r and h, of a point lying on the nucleus surface at time t:

$$ r\left(t,w\right)={\int}_w^t{p}_{\mathrm{r}}\left(\xi \right)\mathrm{d}\xi $$
(25)
$$ h\left({t}^{\prime },w\right)={\int}_{t^{\prime}}^w{p}_{\mathrm{h}}\left(\xi \right)\mathrm{d}\xi . $$
(26)

In these equations, t is the birth time of the nucleus, and w > t is the time of arrival of the nucleus at height h, i.e., the semi-axis of the ellipsoid at time w equals h: B2(w − t) = h2. Equations 25 and 26 provide h = h(t, w) that can be inverted to get w = w(t, h). Next, by considering the 2D phase transition on the layer at height h, we obtain (Fig. 10): \( {\xi}_{\mathrm{c}}\left(h,t\right)=H\left({t}_{\mathrm{mx}}^{\prime}\right)\pi {\int}_0^{t_{\mathrm{mx}}^{\prime }}r{\left(t,w\left({t}^{\prime },h\right)\right)}^2\dot{N}\left({t}^{\prime}\right)\mathrm{d}{t}^{\prime } \) with \( w\left({t}_{\mathrm{mx}}^{\prime },h\right)=t \), which becomes, using Eq. 25,

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=H\left({t}_{\mathrm{mx}}^{\prime}\right)\pi {\int}_0^{t_{\mathrm{mx}}^{\prime }}\dot{N}\left({t}^{\prime}\right){\left[{\int}_{w\left({t}^{\prime },h\right)}^t{p}_{\mathrm{r}}\left(\xi \right) d\xi \right]}^2\mathrm{d}{t}^{\prime }, $$
(27)

that is the expression derived in [6]. Next, we apply Eq. 27 to the ellipsoidal and cone-shaped nuclei in diffusional growth. To this purpose, the pr and ph functions have to be determined.

  • Ellipsoidal nuclei. In this case, pr and ph (Eqs. 25 and 26) should satisfy Eq. 21. It is possible to show that \( {p}_{\mathrm{r}}(t)=\frac{A}{2\sqrt{t-w}} \) and \( {p}_{\mathrm{h}}(t)=\frac{B}{2\sqrt{t-{t}^{\prime }}} \) are the appropriate functions. Use of these rates in Eq. 27 provides

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=H\left(t-\frac{h^2}{B^2}\right)\pi {\int}_0^{t-\frac{h^2}{B^2}}\dot{N}\left({t}^{\prime}\right){\left[{\int}_{w\left({t}^{\prime },h\right)}^t\frac{A}{2\sqrt{\xi -w}}\mathrm{d}\xi \right]}^2\mathrm{d}{t}^{\prime }. $$
(28)

Moreover, Eq. 26 gives \( h\left({t}^{\prime },w\right)=B\sqrt{w-{t}^{\prime }} \) which implies \( w\left({t}^{\prime },h\right)=\frac{h^2}{B^2}+{t}^{\prime } \). Performing the integral in Eq. 28, we eventually obtain

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=H\left(t-\frac{h^2}{B^2}\right)\pi {\int}_0^{t-\frac{h^2}{B^2}}\dot{N}\left({t}^{\prime}\right){\left[A\sqrt{t-\frac{h^2}{B^2}-{t}^{\prime }}\right]}^2\mathrm{d}{t}^{\prime }. $$
(29)

For site-saturation nucleation, Eq. 29 gives

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=H\left(t-\frac{h^2}{B^2}\right)\pi {N}_0{\int}_0^{t-\frac{h^2}{B^2}}{\left[A\sqrt{t-\frac{h^2}{B^2}-{t}^{\prime }}\right]}^2\delta \left({t}^{\prime}\right)\mathrm{d}{t}^{\prime }, $$
(30)

that leads to Eq. 24.

Cone-shaped nuclei. In the case of right circular cones \( {p}_{\mathrm{r}}=\frac{\mu_1}{\sqrt{t}} \), \( {p}_{\mathrm{h}}=\frac{\mu_2}{\sqrt{t}} \) (with constant μi) and \( w\left({t}^{\prime },h\right)={\left(\frac{h}{2{\mu}_2}+\sqrt{t^{\prime }}\right)}^2 \). For site saturation nucleation, Eq. 27 becomes (\( {t}_{\mathrm{mx}}^{\prime }=\sqrt{t}-\frac{h}{2{\mu}_2} \))

$$ {\xi}_{\mathrm{c}}\left(h,t\right)=H\left({t}_{\mathrm{mx}}^{\prime}\right)\pi {N}_0{\int}_0^{t_{\mathrm{mx}}^{\prime }}\delta \left({t}^{\prime}\right){\left[{\int}_{{\left(\frac{h}{2{\mu}_2}+\sqrt{t^{\prime }}\right)}^2}^t\frac{\mu_1}{\sqrt{\xi }}\ \mathrm{d}\xi \right]}^2\mathrm{d}{t}^{\prime }=4\pi {N}_0{\mu}_1^2\kern0.5em {\left[\sqrt{t}-\frac{h}{2{\mu}_2}\right]}^2 $$
(31)

The volume of the deposit is equal to

$$ V(t)={\int}_0^{h_{\mathrm{mx}}}\left(1-{e}^{-{\xi}_{\mathrm{c}}\left(h,t\right)}\right)\ \mathrm{d}h=2{\mu}_2\sqrt{t}{\int}_0^1\left(1-{e}^{-4\pi {N}_0{\mu}_1^2t{\xi}^2}\right)\ \mathrm{d}\xi . $$
(32)

The current density is obtained from the time derivative of Eq. 32, \( J(t)= zF\frac{\rho }{M}\frac{\mathrm{d}V(t)}{\mathrm{d}t} \), as

$$ J(t)=\frac{zF\rho}{M}\frac{\mu_2}{\sqrt{t}}\left(1-{e}^{-4\pi {N}_0{\mu}_1^2t}\right) $$
(33)

that is Eq. 19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politi, S., Tomellini, M. Kinetics of island growth in the framework of “planar diffusion zones” and “3D nucleation and growth” models for electrodeposition. J Solid State Electrochem 22, 3085–3098 (2018). https://doi.org/10.1007/s10008-018-4011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4011-2

Keywords

Navigation