Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 99))

Abstract

The invention of novel functional materials and their investigation at the molecular level are vital in today’s nanotechnology era. Atomistic modelling approaches are cost-effective and time-consuming alternatives to expensive and time-consuming experimental methods, and they are precise enough to predict the mechanical characteristics of materials. The current chapter goes through the many steps involved in a molecular dynamic’s investigation. The various types of interatomic potentials and their applicability to various materials have been thoroughly examined. Following that, the integration algorithm for solving a set of Newton’s equations, as well as the radius cut-off distance and temperature control, was addressed. Afterwards, many types of ensembles and boundary conditions were addressed, which helped in simulating real-world experimental settings. The approaches for minimizing energy have also been briefly explored. Finally, the limitations of molecular dynamics have been examined, as well as their applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, J.G.: Computational Materials Science: An Introduction. CRC Press (2016)

    Book  Google Scholar 

  2. Rajasekaran, G., Narayanan, P., Parashar, A.: Effect of point and line defects on mechanical and thermal properties of graphene: a review. Crit. Rev. Solid State Mater. Sci. 41, 47–71 (2016)

    Article  CAS  Google Scholar 

  3. Tadmor, E.B., Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press (2011)

    Google Scholar 

  4. Buehler, M.J.: Atomistic Modeling of Materials Failure. Springer, US (2008)

    Book  Google Scholar 

  5. Wagner, N.J., Holian, B.L., Voter, A.F.: Molecular-dynamics simulations of two-dimensional materials at high strain rates. Phys. Rev. A 45, 15 (1992)

    Article  Google Scholar 

  6. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  CAS  Google Scholar 

  7. Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., et al.: Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)

    Article  CAS  Google Scholar 

  8. Finnis, M.W., Sinclair, J.E.: A simple empirical N-body potential for transition metals. Philos. Mag. A 50, 45–55 (1984)

    Article  CAS  Google Scholar 

  9. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984)

    Article  CAS  Google Scholar 

  10. Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992)

    Article  CAS  Google Scholar 

  11. Swadener, J.G., Baskes, M.I., Nastasi, M.: molecular dynamics simulation of brittle fracture in silicon. Phys. Rev. Lett. 89, 085503 (2002)

    Article  CAS  Google Scholar 

  12. Johnston, H.S., Parr, C.: Activation energies from bond energies. I. Hydrogen transfer reactions. J. Am. Chem. Soc. 85, 2544–2551 (2002)

    Article  Google Scholar 

  13. Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)

    Article  CAS  Google Scholar 

  14. Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632 (1986)

    Article  CAS  Google Scholar 

  15. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)

    Article  CAS  Google Scholar 

  16. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  CAS  Google Scholar 

  17. Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter. 14, 783 (2002)

    CAS  Google Scholar 

  18. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)

    Article  CAS  Google Scholar 

  19. van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001)

    Article  CAS  Google Scholar 

  20. Kumar, R., Rajasekaran, G., Parashar, A.: Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study. Nanotechnology 27, 085706 (2016)

    Article  CAS  Google Scholar 

  21. Rajasekaran, G., Kumar, R., Parashar, A.: Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment. Mater. Res. Express 3, 035011 (2016)

    Article  CAS  Google Scholar 

  22. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989)

    Article  CAS  Google Scholar 

  23. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)

    Article  CAS  Google Scholar 

  24. Chandra, Y., Scarpa, F., Adhikari, S., et al.: Pullout strength of graphene and carbon nanotube/epoxy composites. Compos. B Eng. 102, 1–8 (2016)

    Article  CAS  Google Scholar 

  25. Cha, J.H., Kyoung, W., Song, K., et al.: Quantitative evaluation of the dispersion of graphene sheets with and without functional groups using molecular dynamics simulations. Nanoscale Res. Lett. 11, 1–7 (2016)

    Article  CAS  Google Scholar 

  26. Verma, A., Parashar, A., Packirisamy, M.: Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8 (2018)

    Google Scholar 

  27. Rappé, A.K., Casewit, C.J., Colwell, K.S., et al.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  28. Sun, H.: COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998)

    Article  CAS  Google Scholar 

  29. MacKerell, A.D., Wiórkiewicz-Kuczera, J., Karplus, M., MacKerell, A.D.: An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc. 117, 11946–11975 (1995)

    Article  CAS  Google Scholar 

  30. Allinger, N.L., Yuh, Y.H., Lii, J.H.: Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989)

    Article  CAS  Google Scholar 

  31. Verlet, L.: Computer “experiments” on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165, 201 (1968)

    Article  Google Scholar 

  32. Jensen, B.D., Wise, K.E., Odegard, G.M.: The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. J. Comput. Chem. 36, 1587–1596 (2015)

    Article  CAS  Google Scholar 

  33. Yao, Z., Zhu, C.C., Cheng, M., Liu, J.: Mechanical properties of carbon nanotube by molecular dynamics simulation. Comput. Mater. Sci. 22, 180–184 (2001)

    Article  CAS  Google Scholar 

  34. Ajori, S., Ansari, R.: Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations. Curr. Appl. Phys. 14, 1072–1077 (2014)

    Article  Google Scholar 

  35. Choe, J.-I., Kim, B.: Determination of proper time step for molecular dynamics simulation. Bull. Korean Chem. Soc. 21, 419–424 (2000)

    CAS  Google Scholar 

  36. Wu, J., Wei, Y.: Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. J. Mech. Phys. Solids 61, 1421–1432 (2013)

    Article  CAS  Google Scholar 

  37. Jhon, Y.I., Zhu, S.E., Ahn, J.H., Jhon, M.S.: The mechanical responses of tilted and non-tilted grain boundaries in graphene. Carbon 50, 3708–3716 (2012)

    Article  CAS  Google Scholar 

  38. He, L., Guo, S., Lei, J., et al.: The effect of Stone–Thrower–Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75, 124–132 (2014)

    Article  CAS  Google Scholar 

  39. Frenkel, D.B.S.: Understanding Molecular Simulation: From Algorithms to Applications. Elsevier (2001)

    Google Scholar 

  40. Dehoff, R.T.: Thermodynamics in Materials Science. McGraw Hill Inc., New York, NY (1993)

    Google Scholar 

  41. Hu, Y., Sinnott, S.B.: Constant temperature molecular dynamics simulations of energetic particle—solid collisions: comparison of temperature control methods. J. Comput. Phys. 200, 251–266 (2004)

    Article  CAS  Google Scholar 

  42. Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375 (2008)

    Article  Google Scholar 

  43. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., et al.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1998)

    Article  Google Scholar 

  44. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  CAS  Google Scholar 

  45. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1998)

    Article  Google Scholar 

  46. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (2006)

    Article  Google Scholar 

  47. Tsai, J.L., Tu, J.F.: Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater. Des. 31, 194–199 (2010)

    Article  CAS  Google Scholar 

  48. Roy, K., Kar, S., Das, R.N.: Computational Chemistry. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, pp. 151–189 (2015)

    Google Scholar 

  49. Wiberg, K.B.: A scheme for strain energy minimization. Application to the cycloalkanes1. J. Am. Chem. Soc. 87, 1070–1078 (2002)

    Article  Google Scholar 

  50. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  Google Scholar 

  51. Verma, A., Parashar, A.: Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study. Mater. Res. Express 5(11), 115605 (2018)

    Article  CAS  Google Scholar 

  52. Verma, A., Parashar, A., Packirisamy, M.: Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl. Surf. Sci. 470, 1085–1092 (2019)

    Article  CAS  Google Scholar 

  53. Chaurasia, A., Verma, A., Parashar, A., Mulik, R.S.: Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J. Phys. Chem. C 123(32), 20059–20070 (2019)

    Article  CAS  Google Scholar 

  54. Verma, A., Kumar, R., Parashar, A.: Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys. Chem. Chem. Phys. 21(11), 6229–6237 (2019)

    Article  CAS  Google Scholar 

  55. Verma, A., Parashar, A.: Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29(11), 115706 (2018)

    Article  CAS  Google Scholar 

  56. Verma, A., Parashar, A.: The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys. Chem. Chem. Phys. 19(24), 16023–16037 (2017)

    Article  CAS  Google Scholar 

  57. Verma, A., Parashar, A., Packirisamy, M.: Tailoring the failure morphology of 2D bicrystalline graphene oxide. J. Appl. Phys. 124(1), 015102 (2018)

    Article  CAS  Google Scholar 

  58. Singla, V., Verma, A., Parashar, A.: A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Mater. Res. Express 6(1), 015606 (2018)

    Article  CAS  Google Scholar 

  59. Verma, A., Parashar, A.: Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput. Mater. Sci. 143, 15–26 (2018)

    Article  CAS  Google Scholar 

  60. Verma, A., Zhang, W., van Duin, A.C.: ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheet and water nanodroplets. Phys. Chem. Chem. Phys. 23, 10822–10834 (2021)

    Article  CAS  Google Scholar 

  61. Verma, A., Parashar, A., Packirisamy, M.: Role of chemical adatoms in fracture mechanics of graphene nanolayer. Mater. Today: Proc. 11, 920–924 (2019)

    CAS  Google Scholar 

  62. Verma, A., Parashar, A.: Characterization of 2D nanomaterials for energy storage. In: Recent Advances in Theoretical, Applied, Computational and Experimental Mechanics, pp. 221–226. Springer, Singapore (2020)

    Google Scholar 

  63. Verma, A., Parashar, A., Singh, S.K., Jain, N., Sanjay, M.R., Siengchin, S.: Modeling and simulation in polymer coatings. In: Polymer Coatings: Technologies and Applications, Chapter 16, pp. 309–324. Taylor & Francis Group (CRC Press), Boca Raton (2020)

    Google Scholar 

  64. Kataria, A., Verma, A., Sanjay, M.R., Siengchin, S.: Molecular modeling of 2D graphene grain boundaries: mechanical and fracture aspects. Mater. Today: Proc. (2021)

    Google Scholar 

  65. Deji, R., Verma, A., Kaur, N., Choudhary, B.C., Sharma, R.K.: Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater. Today: Proc. (2021)

    Google Scholar 

  66. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., in’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R.: LAMMPS-A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 108171 (2021)

    Google Scholar 

  67. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  68. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  69. Li, J.: AtomEye: an efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11(2), 173 (2003)

    Article  Google Scholar 

  70. Momma, K., Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008)

    Article  CAS  Google Scholar 

  71. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  CAS  Google Scholar 

  72. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 1–17 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Monetary and academic support from the University of Petroleum and Energy Studies, Dehradun, India (SEED Grant program) is highly appreciable. Akarsh Verma would also like to thank the Japan Society for the Promotion of Science (JSPS) for awarding him the JSPS postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G., Mishra, R.R., Verma, A. (2022). Introduction to Molecular Dynamics Simulations. In: Verma, A., Mavinkere Rangappa, S., Ogata, S., Siengchin, S. (eds) Forcefields for Atomistic-Scale Simulations: Materials and Applications. Lecture Notes in Applied and Computational Mechanics, vol 99. Springer, Singapore. https://doi.org/10.1007/978-981-19-3092-8_1

Download citation

Publish with us

Policies and ethics