Skip to main content

Advertisement

Log in

Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation of collector- and binder-free, high-energy density cathodes made from carbon-coated LiFePO4 (C-LFP) and single-walled carbon nanotubes (SWNT) is reported here. These electrodes were developed using a simple to execute, two-step, eco-friendly process. The C-LFP and the SWNT were dispersed in IPA and water, respectively, and then filtered. Electrodes with active material loading as high as 95 wt% were achieved. These electrodes exhibit high specific capacities of 144 mAh/g of electrode at C/10 rate. Additionally, the specific gravimetric power and energy of the C-LFP/SWNT self-standing electrodes surpassed that of the supported electrodes at high C-rate. Finally, the successful preparation of such high-energy density electrodes may provide a step toward the US DOE targets of batteries for electric vehicles for the year 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295

    Article  CAS  Google Scholar 

  2. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5(7):7854–7863

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  4. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  5. Wood III DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242

    Article  Google Scholar 

  6. Marks T, Trussler S, Smith AJ, Xiong D, Dahn JR (2011) A guide to Li-ion coin-cell electrode making for academic researchers. J Electrochem Soc 158(1):A51–A57

    Article  CAS  Google Scholar 

  7. Kretschmer K, Sun B, Xie X, Chen S, Wang G (2016) A free-standing LiFePO4-carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chem 18:2691–2698

    Article  CAS  Google Scholar 

  8. Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries. J Electrochem Soc 160(2):A356–A360

    Article  Google Scholar 

  9. Hyams TC, Go J, Devine TM (2007) Corrosion of aluminum current collectors in high-power lithium-ion batteries for use in hybrid electric vehicles. J Electrochem Soc 154(8):C390–C396

    Article  CAS  Google Scholar 

  10. Zhang SS, Jow TR (2002) Aluminum corrosion in electrolyte of Li-ion battery. J Power Sources 109(2):458–464

    Article  CAS  Google Scholar 

  11. Zhang X, Winget B, Doeff M, Evans JW, Devine TM (2005) Corrosion of aluminum current collectors in lithium-ion batteries with electrolytes containing LiPF6. J Electrochem Soc 152(11):B448–B454

    Article  Google Scholar 

  12. Braithwaite JW, Gonzales A, Nagasubramanian G, Lucero SJ, Peebles DE, Ohlhausen JA, Cieslak WR (1999) Corrosion of lithium‐ion battery current collectors. J Electrochem Soc 146(2):448–456

    Article  CAS  Google Scholar 

  13. Wang Y, He P, Zhou H (2011) Olivine LiFePO4: development and future. Energy Environ Sci 4(3):805–817

    Article  CAS  Google Scholar 

  14. Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138

    Article  CAS  Google Scholar 

  15. Landi BJ, Ganter MJ, Cress CD, Dileo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2(6):638–654

    Article  CAS  Google Scholar 

  16. Cui L-F, Hu L, Choi JW, Cui Y (2010) Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 4(7):3671–3678

    Article  CAS  Google Scholar 

  17. Choi K-H, Cho S-J, Chun S-J, Yoo JT, Lee CK, Kim W, Wu Q, Park S-B, Choi D-H, Lee S-Y, Lee S-Y (2014) Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Lett 14(10):5677–5686

    Article  CAS  Google Scholar 

  18. Cho S-J, Choi K-H, Yoo J-T, Kim J-H, Lee Y-H, Chun S-J, Park S-B, Choi D-H, Wu Q, Lee S-Y, Lee S-Y (2015) Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv Funct Mater 25(38):6029–6040

    Article  CAS  Google Scholar 

  19. Jabbour L, Destro M, Chaussy D, Gerbaldi C, Penazzi N, Bodoardo S, Beneventi D (2012) Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose 20(1):571–582

    Article  Google Scholar 

  20. Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20(35):7344–7347

    Article  CAS  Google Scholar 

  21. Xie M, Li B, Zhou Y (2015) Free-standing high-voltage LiCoO2/multi-wall carbon nanotube paper electrodes with extremely high areal mass loading for lithium ion batteries. J Mater Chem A 3(46):23180–23184

    Article  CAS  Google Scholar 

  22. Fang X, Ge M, Rong J, Zhou C (2014) Free-standing LiNi0.5Mn1.5O4/carbon nanofiber network film as lightweight and high-power cathode for lithium ion batteries. ACS Nano 8(5):4876–4882

    Article  CAS  Google Scholar 

  23. Zhang LC, Hu Z, Wang L, Teng F, Yu Y, Chen CH (2013) Rice paper-derived 3D-porous carbon films for lithium-ion batteries. Electrochimica Acta 89:310–316

    Article  CAS  Google Scholar 

  24. Lee SW, Gallant BM, Lee Y, Yoshida N, Kim DY, Yamada Y, Noda S, Yamada A, Shao-Horn Y (2012) Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ Sci 5(1):5437–5444

    Article  CAS  Google Scholar 

  25. Ban C, Li Z, Wu Z, Kirkham MJ, Chen L, Jung YS, Payzant EA, Yan Y, Whittingham MS, Dillon AC (2011) Extremely durable high-rate capability of a LiNi0.4Mn0.4Co0.2O2 cathode enabled with single-walled carbon nanotubes. Adv Energy Mater 1(1):58–62

    Article  CAS  Google Scholar 

  26. Luo S, Wang K, Wang J, Jiang K, Li Q, Fan S (2012) Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 24(17):2294–2298

    Article  CAS  Google Scholar 

  27. Wang K, Luo S, Wu Y, He X, Zhao F, Wang J, Jiang K, Fan S (2013) Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv Funct Mater 23(7):846–853

    Article  CAS  Google Scholar 

  28. EV Everywhere Grand Challenge Blueprint, U.S.D.o. Energy, Editor. 2013.

  29. Wu Y, Wu H, Luo S, Wang K, Zhao F, Wei Y, Liu P, Jiang K, Wang J, Fan S (2014) Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. RSC Adv 4(38):20010–20016

    Article  CAS  Google Scholar 

  30. Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88:49–54

    Article  Google Scholar 

  31. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, Ter Waarbeek RF, De Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186

    Article  CAS  Google Scholar 

  32. Kim SY, Hong J, Kavian R, Lee SW, Hyder MN, Shao-Horn Y, Hammond PT (2013) Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy Environ Sci 6(3):888–897

    Article  CAS  Google Scholar 

  33. Marco N, Jinzhang L, Francesca M, Matteo P, Nunzio M (2014) Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. Nanotechnology 25(43):435405

    Article  Google Scholar 

  34. Vigolo B, Pénicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334

    Article  CAS  Google Scholar 

  35. Mirri F, Ma AWK, Hsu TT, Behabtu N, Eichmann SL, Young CC, Tsentalovich DE, Pasquali M (2012) High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6(11):9737–9744

    Article  CAS  Google Scholar 

  36. Jiang K, Li Q, Fan S (2002) Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909):801–801

    Article  CAS  Google Scholar 

  37. Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88(18):183104

    Article  Google Scholar 

  38. Kong B-S, Yoo H-W, Jung H-T (2009) Electrical conductivity of graphene films with a poly(allylamine hydrochloride) supporting layer. Langmuir 25(18):11008–11013

    Article  CAS  Google Scholar 

  39. Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS (2008) The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 178(31–32):1676–1693

    Article  CAS  Google Scholar 

  40. Chen J, Whittingham MS (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 8(5):855–858

    Article  CAS  Google Scholar 

  41. Tsentalovich DE, Ma AWK, Lee JA, Behabtu N, Bengio EA, Choi A, Hao J, Luo Y, Headrick RJ, Green MJ, Talmon Y, Pasquali M (2016) Relationship of extensional viscosity and liquid crystalline transition to length distribution in carbon nanotube solutions. Macromolecules 49(2):681–689

    Article  CAS  Google Scholar 

  42. Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Duttine M, Wattiaux A, Liu Y, Sun AX, Liang G, Dollé M (2016) Control of the LiFePO4 electrochemical properties using low-cost iron precursor in a melt process. J Solid State Electrochem 20:1–10

    Article  Google Scholar 

  43. Dollé M, Orsini F, Gozdz AS, Tarascon J-M (2001) Development of reliable three-electrode impedance measurements in plastic Li-ion batteries. J Electrochem Soc 148(8):A851–A857

    Article  Google Scholar 

  44. Maillaud L, Zakri C, Ly I, Pénicaud A, Poulin P (2013) Conductivity of transparent electrodes made from interacting nanotubes. Appl Phys Lett 103(26):263106

    Article  Google Scholar 

  45. Zhang W-J (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196(6):2962–2970

    Article  CAS  Google Scholar 

  46. Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Liang G, Dollé M (2015) LiFePO4 synthesized via melt process using low cost iron precursors. J Solid State Electrochem: 1–9

  47. Zhang W-J (2010) Comparison of the rate capacities of LiFePO4 cathode materials. J Electrochem Soc 157(10):A1040–A1046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This original work was supported by CFI and NSERC at the University of Montreal (Montreal, Quebec, Canada). It was additionally supported by the Air Force Office of Scientific Research (AFOSR) grants FA9550-12-1-0035 and FA9550-15-1-0370 and the Robert A. Welch Foundation (C-1668) at Rice University (Houston, TX, USA).

Authors’ contributions

TB and LM initiated the project and completed the first experiments. LT performed the latest electrode preparation. SR provided his experience and electrochemical knowledge for the project. MD and MP supervised the project from their respective research areas, i.e., MD for active material and electrochemical properties at the University of Montreal and MP for SWNT electrode preparation and characterization at Rice University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Dollé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibienne, T., Maillaud, L., Rousselot, S. et al. Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries. J Solid State Electrochem 21, 1407–1416 (2017). https://doi.org/10.1007/s10008-016-3488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3488-9

Keywords

Navigation