Skip to main content

Advertisement

Log in

Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Today most of commercial Li-ion batteries (LIBs) are manufactured using toxic solvents and synthetic polymer binders. In order to lower the cost and the environmental impact of LIBs an effort must be made to identify low-cost and environmentally friendly materials and processes. In this work, flexible, self-standing and easily recyclable LiFePO4 cathodes are obtained using cellulose fibers as biosourced binder and a quick, aqueous filtration process, easily upscalable capitalizing the well-established papermaking know-how. The obtained paper-cathodes show very good mechanical properties, with Young’s modulus as high as 100 MPa, discharge capacity values up to 110 mAh g−1 and very good cycling performances, comparable with conventional polymer-bonded LiFePO4 cathodes. Moreover, a complete paper-cell, constituted by a paper-cathode, a paper-separator and a paper-anode is presented, showing good cycling performances in terms of specific capacity, efficiency and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abad E, Zampolli S, Marco S et al (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensor Actuat B-Chem 127:2–7. doi:https://doi.org/10.1016/j.snb.2007.07.007

    Article  CAS  Google Scholar 

  • Anderson RE, Guan J, Ricard M et al (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20:2400. doi:https://doi.org/10.1039/B924260K

    Article  CAS  Google Scholar 

  • Archuleta MM (1995) Toxicity of materials used in the manufacture of lithium batteries. J Power Sour 54:138–142. doi:https://doi.org/10.1016/0378-7753(94)02054-7

    Article  CAS  Google Scholar 

  • Bodoardo S, Gerbaldi C, Meligrana G, et al (2009) Optimisation of some parameters for the preparation of nanostructured LiFePO4/C cathode. Ionics 15:19–26

    Article  CAS  Google Scholar 

  • Buqa H, Holzapfel M, Krumeich F et al (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sour 161:617–622. doi:https://doi.org/10.1016/j.jpowsour.2006.03.073

    Article  CAS  Google Scholar 

  • Chen Z, Christensen L, Dahn JR (2003) Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J Electrochem Soc 150:A1073–A1078. doi:https://doi.org/10.1149/1.1586922

    Article  CAS  Google Scholar 

  • Chung IJ, Kang I (2009) Flexible display technology—opportunity and challenges to new business application. Mol Cryst Liq Cryst 507:1–17. doi:https://doi.org/10.1080/15421400903047950

    Article  CAS  Google Scholar 

  • Daniel C (2008) Materials and processing for lithium-ion batteries. JOM 60:43–48. doi:https://doi.org/10.1007/s11837-008-0116-x

    Article  CAS  Google Scholar 

  • Darragh KV, Ertell CA (2001) Aluminum sulfate and alums. Encyclopedia of Chemical Technology

  • Dewulf J, Van der Vorst G, Denturck K et al (2010) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Conserv Recycl 54:229–234. doi:https://doi.org/10.1016/j.resconrec.2009.08.004

    Article  Google Scholar 

  • Dunne L, Ashdown S, Smyth B (2005) Expanding garment functionality through embedded electronic technology. JTATM 4:1–11

    Google Scholar 

  • Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi:https://doi.org/10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  • Franger S, Le Cras F, Bourbon C, Rouault H (2003) Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Sour 119–121:252–257. doi:https://doi.org/10.1016/S0378-7753(03)00242-8

    Article  CAS  Google Scholar 

  • Ghannam MT, Esmail MN (1997) Rheological properties of carboxymethyl cellulose. J Appl Polym Sci 64:289–301. doi:https://doi.org/10.1002/(SICI)1097-4628(19970411)64:2<289:AID-APP9>3.0.CO;2-N

    Article  CAS  Google Scholar 

  • Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sour 165:887–891

    Article  CAS  Google Scholar 

  • Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106:21490–21494

    Article  CAS  Google Scholar 

  • Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502–183502–3

    Article  Google Scholar 

  • Hu L, La Mantia F, Wu H et al (2011) Lithium-ion textile batteries with large areal mass loading. Adv Energ Mater 1:1012–1017

    Article  CAS  Google Scholar 

  • Hubbe M, Wang F (2004) Charge-related measurements: a reappraisal. part 2: fibre-pad streaming potential. Paper Technol 45:27–34

    CAS  Google Scholar 

  • Jabbour L, Gerbaldi C, Chaussy D et al (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347

    Article  CAS  Google Scholar 

  • Jabbour L, Destro M, Gerbaldi C et al (2012) Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J Mater Chem 22:3227–3233

    Article  CAS  Google Scholar 

  • Kim GT, Jeong SS, Joost M et al (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sour 196:2187–2194

    Article  CAS  Google Scholar 

  • Lee JH, Kim JS, Kim YC et al (2008a) Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries. Ultramicroscopy 108:1256–1259

    Article  CAS  Google Scholar 

  • Lee JH, Kim JS, Kim YC et al (2008b) Effect of carboxymethyl cellulose on aqueous processing of LiFePO4 cathodes and their electrochemical performance. Electrochem Solid State 11:A175

    Article  CAS  Google Scholar 

  • Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose. Electrochem Solid-State Lett 10:A17–A20

    Article  CAS  Google Scholar 

  • Li Z, Zhang D, Yang F (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44:2435–2443

    Article  CAS  Google Scholar 

  • Li J, Klöpsch R, Nowak M et al (2011) Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J Power Sour 196:7687

    Article  CAS  Google Scholar 

  • Liimatainen H, Haavisto S, Haapala A, Niinimäki J (2009) Influence of adsorbed and dissolved carboxtmethyl cellulose on fibre suspension dispersing, dewaterability and fines retention. Bioresources 4:321–340

    CAS  Google Scholar 

  • Lux SF, Schappacher F, Balducci A et al (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157:A320–A325

    Article  CAS  Google Scholar 

  • Maleki H, Deng G, Kerzhner-Haller I et al (2000) Thermal stability studies of binder materials in anodes for lithium-ion batteries. J Electrochem Soc 147:4470–4475

    Article  CAS  Google Scholar 

  • Markevich E, Salitra G, Aurbach D (2005) Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem Commun 7:1298–1304

    Article  CAS  Google Scholar 

  • Meligrana G, Gerbaldi C, Tuel A et al (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sour 160:516–522

    Article  CAS  Google Scholar 

  • Meoli D, May-Plumlee T (2002) Interactive electronic textile development: a review of technologies. JTATM 2:1–12

    Google Scholar 

  • Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batterieis Sol Cells 9:209–217

    CAS  Google Scholar 

  • Nnorom IC, Osibanjo O (2009) Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. IJEST 6:641–650

    CAS  Google Scholar 

  • Nyström G, Mihranyan A, Razaq A et al (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182

    Article  Google Scholar 

  • Padhi AK (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  • Patil A, Patil V, Wook Shin D et al (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942

    Article  CAS  Google Scholar 

  • Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104:13574–13577

    Article  CAS  Google Scholar 

  • Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15:1623–1630

    Article  CAS  Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sour 195:2419–2430

    Article  CAS  Google Scholar 

  • Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ion 148:283–289

    Article  CAS  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  CAS  Google Scholar 

  • Xie L, Zhao L, Wan J et al (2012) The electrochemical performance of carboxymethyl cellulose lithium as a binding material for anthraquinone cathodes in lithium batteries. J Electrochem Soc 159:A499–A505

    Article  CAS  Google Scholar 

  • Xu J, Thomas HR, Francis RW et al (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sour 177:512–527

    Article  CAS  Google Scholar 

  • Yang L, Rida A, Vyas R, Tentzeris MM (2007) RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans Microw Theory Tech 55:2894–2901

    Article  Google Scholar 

  • Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, New York

    Book  Google Scholar 

  • Zhang WJ (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sour 196:2962–2970

    Article  CAS  Google Scholar 

  • Zhang SS, Jow TR (2002) Aluminum corrosion in electrolyte of Li-ion battery. J Power Sour 109:458–464

    Article  CAS  Google Scholar 

  • Zhang SS, Allen JL, Xu K, Jow TR (2005) Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes. J Power Sour 147:234–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministere de l’Enseignement Superieur et de la Recherche (MESR) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Jabbour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbour, L., Destro, M., Chaussy, D. et al. Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose 20, 571–582 (2013). https://doi.org/10.1007/s10570-012-9834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9834-x

Keywords

Navigation