Skip to main content
Log in

Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A polypyrrole/molybdenum trioxide/graphene nanoribbon (PPy/MoO3/GNR) ternary nanocomposite was successfully synthesized via an in situ method. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses show that MoO3 was successfully combined with the GNRs. The one-dimensional morphology was observed using field emission scanning electron microscopy and transmission electron microscopy. The electrochemical tests show that the PPy/MoO3/GNR ternary nanocomposite exhibits the highest specific capacitance (844 F g−1) among the investigated materials and exhibits good cycling stability for 1000 cycles. These results collectively demonstrate that the combination of each component can efficiently increase the specific capacitance and cycling stability. As such, the method reported herein represents a promising approach for fabricating supercapacitor electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu XJ, Zhang F, Dou H, Yuan CZ, Yang SD, Hao L, Shen LF, Zhang LJ, Zhang XG (2012) Electrochim Acta 69:160–166

    Article  CAS  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  3. Qu DY, Shi H (1998) J Power Sources 74:99–107

    Article  CAS  Google Scholar 

  4. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  5. Stoller Meryl D, Park SJ, Zhu YW, An JH, Ruoff Rodney S (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  6. Lee CG, Wei XD, Kysar Jeffrey W, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  7. de Oliveira HP, Sydlik Stefanie A, Swager Timothy M (2013) J Phy Chem C 117:10270–10276

    Article  Google Scholar 

  8. Konwer S, Boruah R, Dolui Swapan K (2011) J Elctron Mater 40:2248–2255

    Article  CAS  Google Scholar 

  9. Liu WW, Yan XB, Lang JW, Xue QJ (2012) J Mater Chem 22:8853–8861

    Article  CAS  Google Scholar 

  10. Li L, Raji Abdul-Rahman O, Fei HL, Yang Y, Samuel Errol LG, Tour James M (2013) ACS Appl Mater Interfaces 5:6622–6627

    Article  CAS  Google Scholar 

  11. Hsu FH, Wu TM (2014) Synth Metals 198:188–195

    Article  CAS  Google Scholar 

  12. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  13. Li ZP, Mi YJ, Liu XH, Liu S, Yang SR, Wang JQ (2011) J Mater Chem 21:14706–14711

    Article  CAS  Google Scholar 

  14. Tang W, Gao XW, Zhu YS, Yue YB, Shi Y, Wu YP, Zhu K (2012) J Mater Chem 22:20143–20145

    Article  CAS  Google Scholar 

  15. Liu ZL, Tay SW, Li X (2011) Chem Commun 47:12473–12475

    Article  CAS  Google Scholar 

  16. Camacho Bragado GA, Jose Yacaman M (2006) Appl Phys A Mater Sci Process 82:19–22

    Article  CAS  Google Scholar 

  17. Irmawati R, Shafizah M (2009) Inter J Basic Appl Sci 9:34–36

    Google Scholar 

  18. Shakir I, Shahid M, Yang HW, Kang DJ (2010) Electrochim Acta 56:376–380

    Article  CAS  Google Scholar 

  19. Takasu Y, Matsuo C, Ohnuma T, Ueno M, Murakami Y (1999) Electrochem 67:1187–1188

    CAS  Google Scholar 

  20. Sugimoto W, Ohnuma T, Murakami Y, Takasu Y (2001) Electrochem Solid State Lett 4:A145–A147

    Article  CAS  Google Scholar 

  21. An KH, Jeon KK, Heo JK, Lim SC, Bae J, Lee YH (2002) J The Electrochem Soc 149:A1058–A1062

    Article  CAS  Google Scholar 

  22. Fan LZ, Joachim M (2006) Electrochem Commun 8:937–940

    Article  CAS  Google Scholar 

  23. Xu CH, Sun J, Gao L (2011) J Mater Chem 21:11253–11258

    Article  CAS  Google Scholar 

  24. Liu Y, Wang HH, Zhou J, Bian LY, Zhu EW, Hai JF, Tang J, Tang WH (2013) Electrochim Acta 112:44–52

    Article  CAS  Google Scholar 

  25. Wang WJ, Hao QL, Lei W, Xia XF, Wang X (2012) RSC Adv 2:10268–10274

    Article  CAS  Google Scholar 

  26. Han GQ, Liu Y, Kan EJ, Tang J, Zhang LL, Wang HH, Tang WH (2014) RSC Adv 4:9898–9904

    Article  CAS  Google Scholar 

  27. Lufrano F, Staiti P, Minutoli M (2004) J The Electrochem Soc 151:A64–A68

    Article  CAS  Google Scholar 

  28. Weast RC, Astle MJ (1981) CRC handbook of chemistry and physics, 62nd edn. CRC Press Inc., Boca Raton, FL

    Google Scholar 

  29. Davies A, Audette P, Farrow B, Hassan F, Chen ZW, Choi JY, Yu AP (2011) J Phys Chem C 115:17612–17620

    Article  CAS  Google Scholar 

  30. Subba Reddy CV, Walker Edwin Jr H, Wen C, Mho SI (2008) J Power Sources 183:330–333

    Article  CAS  Google Scholar 

  31. Mendoza-Sanchez B, Brousse T, Ramirez-Castro C, Nicolosi V, Grant PS (2013) Electrochim Acta 91:253–260

    Article  CAS  Google Scholar 

  32. Liu CG, Yu ZN, Neff D, Zhamu A, Jang Bor Z (2010) Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  33. Liu Y, Zhang BH, Yang YQ, Chang Z, Wen ZB, Wu YP (2013) J Mater Chem A 1:13582–13587

    Article  CAS  Google Scholar 

  34. Zhang X, Zeng XZ, Yang M, Qi YX (2014) ACS Appl Mater Interfaces 6:1125–1130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by National Science Council through the project NSC102-2511-S-005-004-MY3 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, FH., Wu, TM. Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor. J Solid State Electrochem 20, 691–698 (2016). https://doi.org/10.1007/s10008-015-3094-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3094-2

Keywords

Navigation