Skip to main content
Log in

Self-assembly of molybdite nanoribbons

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article we report the synthesis of molybdenum trioxide nanoribbons assembled into self-standing films. The molybdenum oxide crystals are prepared by acid decomposition of sodium molybdate under hydrothermal conditions. The set of conditions to obtain well-aligned single crystalline, single-phase products was determined; under these conditions it is possible to obtain assemblies of crystals of several centimeters, aligned along a single crystalline direction. These crystals are also suitable precursors to other molybdenum chalcogenides, as we present a nanostructured molybdenum sulfide obtained by the sulfidation of these molybdenum oxide nanoribbons. A considerable amount of single nanowires and nanoplatelets of molybdenum sulfide were observed in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Goodenough, presented at the 4th Intl. Conference on the Chemistry and uses of Molybdenum, Ann Arbor, Michigan (1982)

  2. Tenne R, Margulis L, Genut M, Hodes G (1992) Nature 360:444

    Article  ADS  Google Scholar 

  3. Tenne R (2002) Colloids Surf. 208:83

    Article  Google Scholar 

  4. Rao CNR, Nath M (2003) Dalton Trans. 1:1

    Article  PubMed  Google Scholar 

  5. Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R (1997) Nature 387:791

    Article  ADS  Google Scholar 

  6. Arulraj A, Goutenoire F, Tabellout M, Bohnke O, Lacorre P (2002) Chem. Mater. 14:2492

    Article  Google Scholar 

  7. Chevrel R, Hirrien M, Sergent M (1986) Polyhedron 5:87

    Article  Google Scholar 

  8. Delk T, Sienko FS, Sienko MJ (1979) Solid State Commun. 31:699

    Article  Google Scholar 

  9. Li YB, Bando Y, Goldberg D, Kurashima K (2002) Appl. Phys. Lett. 81:5048

    Article  ADS  Google Scholar 

  10. Li YB, Bando Y, Goldberg D (2003) Appl. Phys. Lett. 82:1962

    Article  ADS  Google Scholar 

  11. Zhou J, Xu N-S, Deng S-Z, Jun C, She J-C, Wang Z-L (2003) Adv. Mater. 15:1835

    Article  Google Scholar 

  12. Wakihara M, Uchida T, Suzuki K, Taniguchi M (1989) Electrochim. Acta 34:867

    Article  Google Scholar 

  13. Caillat T, Heurial J-P, Snyder GJ (1999) Solid State Sci. 1:535

    Article  Google Scholar 

  14. Kareem SA, Miranda R (1989) J. Mol. Catal. A Chem. 53:275

    Google Scholar 

  15. Al-Kandari H, Al-Khorafi F, Belatel H, Katrib A (2004) Catal. Commun. 5:225

    Article  Google Scholar 

  16. Queeney KT, Friend CM (2000) J. Phys. Chem. B 104:409

    Article  Google Scholar 

  17. K.L. Riley DP Klein Z Hou SL Soled MC Kerby GB McVicker ES Ellis MS Touvelle S Miseo, US Patent No, 6,783,663 (2004)

  18. Song JH, Chen P, Kim SH, Somorjai GA, Gartside RJ, Dautzenberg F (2002) J. Mol. Catal. A Chem. 184:197

    Article  Google Scholar 

  19. Song C (2003) Catal. Today 86:211

    Article  Google Scholar 

  20. Somani PR, Radhakrishnan S (2002) Mater. Chem. Phys. 77:117

    Article  Google Scholar 

  21. Monk PMS, Ali T, Patridge RD (1995) Solid State Ionics 80:75

    Article  Google Scholar 

  22. McEvoy TM, Stevenson KJ, Hupp JT, Dang X (2003) Langmuir 19:4316

    Article  Google Scholar 

  23. Bach U, Corr D, Lupo D, Pichot F, Ryan M (2002) Adv. Mater. 14:845

    Article  Google Scholar 

  24. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kirn F, Yan H (2003) Adv. Mater. 15:353

    Article  Google Scholar 

  25. Zach MP, Ng KH, Penner RM (2000) Science 290:2120

    Article  PubMed  ADS  Google Scholar 

  26. Zach MP, Inazu K, Ng KH, Hemminger JC, Penner RM (2002) Chem. Mater. 14:3206

    Article  Google Scholar 

  27. Zhao Y, Liu J, Zhou Y, Zhang Z, Xu Y, Naramoto H, Yamamoto S (2003) J. Phys.: Condens. Matter 15:L547

    Article  ADS  Google Scholar 

  28. Lou XW, Zeng HC (2002) Chem. Mater. 14:4781

    Article  Google Scholar 

  29. Li XL, Liu J-F, Li YD (2002) Appl. Phys. Lett. 81:4832

    Article  ADS  Google Scholar 

  30. Li XL, Li YD (2003) Chem. Eur. J. 9:2726

    Article  Google Scholar 

  31. Li WJ, Shi EW, Ko JM, Chen ZZ, Ogino H, Fukuda T (2003) J. Cryst. Growth 250:418

    Article  Google Scholar 

  32. Patzke GR, Michailovski A, Krumeich F, Nesper R, Grunwaldt J-D, Baiker A (2004) Chem. Mater. 16:1126

    Article  Google Scholar 

  33. Tian Y, He Y, Zhu Y (2004) Mater. Chem. Phys. 87:87

    Article  Google Scholar 

  34. Niederberger M, Krumeich F, Muhr H-J, Müller M, Nesper R (2001) J. Mater. Chem. 11:194J

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jose-Yacaman.

Additional information

PACS

81.07.BC; 81.05.Je; 81.20.Ka

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho-Bragado, G., Jose-Yacaman, M. Self-assembly of molybdite nanoribbons. Appl. Phys. A 82, 19–22 (2006). https://doi.org/10.1007/s00339-005-3370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3370-6

Keywords

Navigation