Skip to main content
Log in

Facile and scalable fabrication of graphene/polypyrrole/MnOx/Cu(OH)2 composite for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, to improve the specific capacitance of graphene-based supercapacitor, novel quadri composite of G/PPy/MnOx/Cu(OH)2 was synthesized by using a facile and inexpensive route. First, a two-step method consisting of thermal decomposition and in situ oxidative polymerization was employed to fabricate graphene/polypyrrole/manganese oxide composites. Second, Cu(OH)2 nanowires were deposited on Cu foil. Afterwards, for the electrochemical measurements, composite powders were deposited on Cu(OH)2/Cu foil substrate as working electrodes. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. The XRD analysis revealed the formation of PPy/graphene, Mn3O4/graphene, and graphene/polypyrrole/MnOx. In addition, the presence of polypyrrole and manganese oxides was confirmed using FT-IR and Raman spectroscopies. Graphene/polypyrrole/MnOx/Cu(OH)2 electrode showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 370 F/g at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge–discharge, EIS and cyclical performance) of the G/Cu(OH)2, G/PPy/Cu(OH)2, G/Mn3O4/Cu(OH)2, and G/PPy/MnOx/Cu(OH)2 electrodes suggested that the G/PPy/MnOx/Cu(OH)2 composite electrode is promising materials for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Z, Ma CY, Wang HL, Liu ZH, Hao ZP (2013) Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance. J Alloys Comp 552:486–491

    Article  CAS  Google Scholar 

  2. Xiang C, Li M, Zhi M, Manivannan A, Wu NQ (2012) Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J Mater Chem A 22:19161–19167

    Article  CAS  Google Scholar 

  3. Chen T, Dai L (2014) Flexible supercapacitors based on carbon nanomaterials. J Mater Chem A 2(28):10756–10775

    Article  CAS  Google Scholar 

  4. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    Article  CAS  Google Scholar 

  5. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62

    Article  CAS  Google Scholar 

  6. Wu ZS, Feng XL, Cheng HM (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4(1):2487–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, Wang F (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5(19):9508–9516

    Article  CAS  PubMed  Google Scholar 

  8. Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196(4):2393–2397

    Article  CAS  Google Scholar 

  9. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  CAS  Google Scholar 

  10. Niu L, Wang J, Hong W, Sun J, Fan Z, Ye X, Wang H, Yang S (2014) Solvothermal synthesis of Ni/reduced graphene oxide composites as electrode material for supercapacitors. Electrochim Acta 123:560–568

    Article  CAS  Google Scholar 

  11. Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210–218

    Article  CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  PubMed  Google Scholar 

  13. Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) Electrochatalytic properties of PtCo/C and PtNi/C alloys for the oxygen Reduction in Alkaline solution. J Electrochem Soc 154:369–375

  14. Gómez-Navarro C, Thomas Weitz R, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503

    Article  CAS  PubMed  Google Scholar 

  15. Du H, Jiao L, Cao K, Wang Y, Yuan H (2013) Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance. ACS Appl Mater Interfaces 5(14):6643–6648

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Dong ZH, Wang ZG, Zhang FX, Jin J (2013) Advanced functional materials. Adv Funct Mater 23(21):2758–2764

    Article  CAS  Google Scholar 

  17. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19):8879–8883

    Article  CAS  PubMed  Google Scholar 

  18. Sutter RW, Flege J, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7(5):406–411

    Article  CAS  PubMed  Google Scholar 

  19. Yang RM, Kwon H, Park HK, Do YR, Lee SB, Yim S (2014) Coaxial RuO2–ITO nanopillars for transparent supercapacitor application. Langmuir 30:1704–1709

    Article  CAS  PubMed  Google Scholar 

  20. Gu XY, Yang Y, Hu Y, Hu M, Huang J, Wang CY (2015) Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization. J Mater Chem A 3(11):5866–5874

    Article  CAS  Google Scholar 

  21. Li ZP, Mi YJ, Liu XH, Liu S, Yang SR, Wang JQ (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21(38):14706–14711

    Article  CAS  Google Scholar 

  22. Lv W, Sun F, Tang DM, Fang HT, Liu C, Yang QH, Cheng HM (2011) A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J Mater Chem 21(25):9014–9019

    Article  CAS  Google Scholar 

  23. Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN (2014) In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells. Sci Rep 4(1):5305. https://doi.org/10.1038/srep05305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye SB, Feng JC (2014) Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl Mater Interfaces 6:9671–9679

    Article  CAS  PubMed  Google Scholar 

  25. Ramphal A, Hagerman ME (2015) Water-processable laponite/polyaniline/graphene oxide nanocomposites for energy applications. Langmuir 31(4):1505–1515

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Yu DS, Xiong W, Liu PP, Liu Y, Dai LM (2014) Graphene-based nanowire supercapacitors. Langmuir 30(12):3567–3571

    Article  CAS  PubMed  Google Scholar 

  27. Wang K, Meng QH, Zhang YJ, Wei ZX, Miao MH (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498

    Article  CAS  PubMed  Google Scholar 

  28. Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Ebrahimi M, Mai WJ, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736

    Article  CAS  PubMed  Google Scholar 

  29. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136(39):13925–13931

    Article  CAS  PubMed  Google Scholar 

  30. Tao JY, Liu NS, Li LY, Sua J, Gao YH (2014) Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 6(5):2922–2928

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Zeng XZ, Yang M, Qi YX (2014) Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl Mater Interfaces 6(2):1125–1130

    Article  CAS  PubMed  Google Scholar 

  32. Li PX, Yang YB, Shi EZ, Shen QC, Shang YY, Wu ST, Wei JQ, Wang KL, Zhu HW, Yuan Q, Cao AY, Wu DH (2014) Core-duble -shell, carbon nanotube/polypyrrole/MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater interface 6(7):5228–5234

    Article  CAS  Google Scholar 

  33. Jiang LL, Lu X, Xie CM, Wan GJ, Zhang HP, Tang YH (2015) Flexible, free-standing TiO2–graphene–polypyrrole composite films as electrodes for supercapacitors. J Phys Chem C 119(8):3903–3910

    Article  CAS  Google Scholar 

  34. Tang PY, Han LJ, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6(13):10506–10515

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, He XY, Li HP, Liu Q, Wang J, Yu L, Yan HJ, Li ZS, Wang P (2014) Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core–shell composite. J Mater Chem A 2(32):12968–12973

    Article  CAS  Google Scholar 

  36. Xu DD, Xu Q, Wang KX, Chen J, Chen ZM (2014) Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl Mater Interfaces 6(1):200–209

    Article  CAS  PubMed  Google Scholar 

  37. Chakrabarti MH, Low CTJ, Brandon NP, Yufit V, Hashim MA, Irfan MF, Akhtar J, Ruiz-Trejo E, Hussain MA (2013) Progress in the electrochemical modifica-tion of graphene-based materials and their applications. Electrochim Acta 107:425–440

    Article  CAS  Google Scholar 

  38. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196(14):5990–5996

    Article  CAS  Google Scholar 

  39. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  PubMed  Google Scholar 

  40. Yuan XX, Ding XL, Wang CY, Ma ZF (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6(4):1105–1124

    Article  CAS  Google Scholar 

  41. Bose S, Kim NH, Kuila T, Lau K, Lee JH (2011) Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nano technology 22:295202

    Google Scholar 

  42. Jiangying Q, Feng G, Quan Z, Zhiyu W, Han H, Beibei L, Wubo W, Xuzhen W, Jieshan Q (2013) Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 5:2999–3005

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Ran W, Xiong DB, Zhang L, Xu J, Gao F (2014) Synthesis of Sn-doped Mn3O4/C nanocomposites as supercapacitor electrodes with remarkable capacity retention. Mater Lett 118:80–83

    Article  CAS  Google Scholar 

  44. Lee JW, Hall AS, Kim JD, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24(6):1158–1164

    Article  CAS  Google Scholar 

  45. Rosaiah P, Zhu J, Shaik Dadamiah PMD, Hussain OM, Qiu Y, Zhao L (2017) Reduced graphene oxide/Mn3O4 nanocomposite electrodes with enhanced electrochemical performance for energy storage applications. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2017.04.008

    Article  CAS  Google Scholar 

  46. Liao QY, Li SY, Cui H, Wang CH (2016) Vertically-aligned graphene@Mn3O4 nanosheets for a high-performance flexible all-solid-state symmetric supercapacitor. J Mater Chem A 4(22):8830–8836

    Article  CAS  Google Scholar 

  47. Cheekati SL, Yao Z, Huang H (2012) The impacts of graphene nanosheets and manganese valency on lithium storage characteristics in graphene/manganese oxide hybrid anode. J Nanomater 2012:1–10. https://doi.org/10.1155/2012/819350

    Article  CAS  Google Scholar 

  48. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high- capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085

    Article  CAS  PubMed  Google Scholar 

  49. Yu M, Zhai T, Lu X, Chen X, Xie S, Lie W, Liang C, Zhao W, Zhang L, Tong Y (2013) Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J Power Sources 239:64–71

    Article  CAS  Google Scholar 

  50. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2011) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325

    Article  CAS  PubMed  Google Scholar 

  51. Huang J, Xu P, Cao D, Zhou X, Yang S, Li Y (2014) Asymmetric supercapacitors based on b-Ni (OH)2 nanosheets and activated carbon with high energy density. J Power Sources 246:371–376

    Article  CAS  Google Scholar 

  52. Wang X, Chen C, Chen K, Chen H, Jun Yuan S (2016) MnO2 nanosheets-decorated CuO nanoneedles arrays@Cu foils for supercapacitors. Int J Electrochem Sci 11:3425–3435

    Article  CAS  Google Scholar 

  53. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  54. Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52

    Article  CAS  Google Scholar 

  55. Chowdhury AN, Azam MS, Aktaruzzaman M, Rahim A (2009) Oxidative and antibacterial activity of Mn3O4. J Hazard Mater 172:1229–1235

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Gong J, He G, Deng Y (2011) Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Mater Chem Phys 129(1-2):477–482

    Article  CAS  Google Scholar 

  57. Fetisov VB, Kozhina GA, Ermakov AN, Fetisov AV, Miroshnikova EG (2007) Electrochemical dissolution of Mn3O4 in acid solutions. J Solid State Electrochem 11(9):1205–1210

    Article  CAS  Google Scholar 

  58. Yang Y, Zeng B, Liu J, Long Y, Li N, Wen Z, Jiang Y (2015) Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor. Mater Res Innov 20(2):92–98. https://doi.org/10.1179/1433075X15Y.0000000021

    Article  CAS  Google Scholar 

  59. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies. Graphene 2(02):81–87

    Article  CAS  Google Scholar 

  60. Liu YF, Yuan GH, Jiang ZH, Yao ZP (2014) Solvothermal synthesis of Mn3O4 nanoparticle/graphene sheet composites and their supercapacitive properties. J Nanomater. https://doi.org/10.1155/2014/190529

    CAS  Google Scholar 

  61. Kang M, Kim JH, Yang W, Jung H (2014) Synthesis and characterization of Mn3O4-graphene nanocomposite thin film by an ex situ approach. Bull Kor Chem Soc 35(4):1067–1072

    Article  CAS  Google Scholar 

  62. Xu P, Ye K, Du M, Liu J, Cheng K, Yin J, Wang G, Cao D (2015) One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Adv 5(46):36656–36664

    Article  CAS  Google Scholar 

  63. Chen J, Xu J, Zhou S, Zhao N, Wong CP (2015) Facile and scalable fabrication of three dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J Mater Chem A 3(33):17385–17391

    Article  CAS  Google Scholar 

  64. Yuan RM, Li HJ, Yin XM, Lu JH, Zhang L (2017) 3D CuO nanosheet wrapped nanofilm grown on Cu foil for highperformance non-enzymatic glucose biosensor electrode. Talanta 174:514–520

    Article  CAS  PubMed  Google Scholar 

  65. Hsu YK, Chen YC, Lin YG (2012) Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J Electroanal Chem 673:43–47

    Article  CAS  Google Scholar 

  66. Ng CH, Lim HN, Lim YS, Chee WK, Huang NM (2015) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res 39(3):344–355

    Article  CAS  Google Scholar 

  67. Ren Y, Wang J, Huang XB, Ding JN (2015) The synthesis of polypyrrole@Mn3O4/reduced graphene oxide anode with improved coulombic efficiency. Electrochemical Acta 186:345–352

    Article  CAS  Google Scholar 

  68. Sun W, Chen L, Wang Y, Zhou Y, Meng S, Li H, Luo Y (2016) Synthesis of highly conductive PPy/graphene/MnO2 composite using ultrasonic irradiation. Synth React Inorg Met Org Nano Met Chem 46(3):437–444

    Article  CAS  Google Scholar 

  69. Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345–356

    Article  CAS  Google Scholar 

  70. Gunda GS, Dubalb DP, Patil a BH, Shindea SS, Lokhandea CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215

    Article  CAS  Google Scholar 

  71. de Oliveira HP, Sydlik SA, Swager T (2013) Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J Phys Chem C 117(20):10270–10276

    Article  CAS  Google Scholar 

  72. Gund Girish S, Dubal Deepak P, Patil Bebi H, Shindea Sujata S, Lokhandea Chandrakant D (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215

    Article  CAS  Google Scholar 

  73. Zhou T, Mo S, Zhou S, Zou W, Liu Y, Yuan D (2011) Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors. J Mater Sci 46(10):3337–3342

    Article  CAS  Google Scholar 

  74. Zhu L, Zhang S, Cui Y, Song H, Chen X (2013) One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite. Electrochim Acta 89:18–23

    Article  CAS  Google Scholar 

  75. Fan Y, Zhang X, Liu Y, Cai Q, Zhang J (2013) One-pot hydrothermalsynthesisofMn3O4/graphene nanocomposite for supercapacitors. Mater Lett 95:153–156

    Article  CAS  Google Scholar 

  76. Zhou H, Yan Z, Yang X, Lv J, Kang L, Liu ZH (2016) RGO/MnO2/polypyrrole ternary film electrode for supercapacitor. Mater Chem Phys 177:40–47

    Article  CAS  Google Scholar 

  77. de Oliveira AHP, Nesciento MLF, de Oliveira HP (2016) Carbon nanotube @ MnO2@polypyrrole composites: chemical synthesis, characterization and application in supercapacitors. Mat Res 19(5):1080–1087. https://doi.org/10.1590/1980-5373-MR-2016-0347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Sedghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miankushki, H.N., Sedghi, A. & Baghshahi, S. Facile and scalable fabrication of graphene/polypyrrole/MnOx/Cu(OH)2 composite for high-performance supercapacitors. J Solid State Electrochem 22, 3317–3329 (2018). https://doi.org/10.1007/s10008-018-4008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4008-x

Keywords

Navigation