Skip to main content
Log in

Facile synthesis of polypyrrole/carbon-coated MoO3 nanoparticle/graphene nanoribbon nanocomposite with high-capacitance applied in supercapacitor electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The core–shell structure of carbon-coated MoO3 (C#MoO3) nanoparticles have been prepared by using a simple hydrothermal synthesis and using in situ method to fabricate the high performance nanocomposite with polypyrrole (PPy) and graphene nanoribbon (GNR). The chemical and structural of the samples were characterized by using Fourier transform infrared (FTIR), Raman, and X-ray diffraction. The morphology of C#MoO3 nanoparticle and its nanocomposite was also observed by using high-resolution transmission electron microscopy. The electrochemical performance of prepared PPy/C#MoO3 nanoparticle/GNR nanocomposite not only present the high specific capacitance (991 F g−1) at 5 mV s−1 scan rate in a 1 M H2SO4 electrolyte but also shows the high retention (92.1%) of capacitance after 1000 charge/discharge cycles. Electrochemical impedance spectroscopy test for PPy/C#MoO3 nanoparticle/GNR nanocomposite also shows the very low charge-transfer resistance. These superior properties significantly show that the C#MoO3 nanoparticle used to fabricate the nanocomposite can further improve the specific capacitance and cycle stability. Here this paper also provides a low cost and facile process to fabricate the high performance nanocomposite as a promising electrode material for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mat. 7, 845–854 (2008)

    Article  Google Scholar 

  2. G.X. Pan, X.H. Xia, F. Cao, J. Chen, P.S. Tang, Y.J. Zhang, H.F. Chen, High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage. Electrochim. Acta 133, 522–528 (2014)

    Article  Google Scholar 

  3. E. Frakowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)

    Article  Google Scholar 

  4. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  Google Scholar 

  5. H.P. Oliveira, S.A. Sydlik, T.M. Swager, Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J. Phy. Chem. C 117, 10270–10276 (2013)

    Article  Google Scholar 

  6. L. Li, A.R.O. Raji, H.L. Fei, Y. Yang, ELG Samuel, J.M. Tour, Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mat Interfaces 5, 6622–6627 (2013)

    Article  Google Scholar 

  7. M.K. Liu, W.W. Tjiu, J.S. Pan, C. Zhang, W. Gao, T.X. Liu, One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale 6, 4233–4242 (2014)

    Article  Google Scholar 

  8. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. 26, 4347–4379 (2015)

    Google Scholar 

  9. F. Yang, L.B. Zhang, A. Zuzuarregui, K. Gregorczyk, L. Li, M. Beltràn, C. Tollan, J. Brede, C. Rogero, A. Chuvilin, M. Knez, Functionalization of defect sites in graphene with RuO2 for high capacitive performance. ACS Appl. Mat. Interfaces 7, 20513–20519 (2015)

    Article  Google Scholar 

  10. C. Pan, H.T. Gu, L. Dong, Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors. J. Power Sources 303, 175–181 (2016)

    Article  Google Scholar 

  11. J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phy. Chem. C 116, 5420–5426 (2012)

    Article  Google Scholar 

  12. Y. Li, G. Louarn, P.H. Aubert, V. Alain-Rizzo, L. Galmiche, P. Audebert, F. Miomandre, Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitors. Carbon 105, 510–520 (2016)

    Article  Google Scholar 

  13. M. Manoj, K.M. Anilkumar, B. Jinisha, Jayalekshmi, Polyaniline-graphene oxide based ordered nanocomposite electrodes for high-performance supercapacitor application. J. Mater. Sci. 28, 14323–14330 (2017)

    Google Scholar 

  14. R. Dhilip Kumar, Y. Andou, Karuppuchamy, Facile synthesis of Co–WO3/functionalized carbon nanotube nanocomposites for supercapacitor applications. J. Mater. Sci. 28, 5425–5434 (2017)

    Google Scholar 

  15. X. Zhang, X.Z. Zeng, M. Yang, Y.X. Qi, Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl. Mat. Interfaces 6, 1125–1130 (2014)

    Article  Google Scholar 

  16. T.M. Wu, S.H. Lin, Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J. Polym. Sci. A 44, 6449–6457 (2006)

    Article  Google Scholar 

  17. J. Zhang, L.B. Kong, J.J. Cai, Y.C. Luo, L. Kang, Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application. Eletrochim Acta 55, 8067–8073 (2010)

    Article  Google Scholar 

  18. X.F. Xia, Q.L. Hao, W. Lei, W.J. Wang, H.L. Wang, X. Wang, Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J. Mater. Chem. 22, 8314–8320 (2012)

    Article  Google Scholar 

  19. A.K. Das, S.K. Karan, B.B. Khatua, High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim. Acta 180, 1–15 (2015)

    Article  Google Scholar 

  20. W.Q. Zheng, S.B. Li, X.H. Yu, C.L. Chen, H.B. Huang, Y.N. Huang, L. Li, Synthesis of hierarchical reduced graphene oxide–SnO2–polypyrrole ternary composites with high electrochemical performance. Mat. Res. Bull. 80, 303–308 (2016)

    Article  Google Scholar 

  21. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, D.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–877 (2009)

    Article  Google Scholar 

  22. A. Davies, P. Audette, B. Farrow, F. Hassan, Z.W. Chen, J.Y. Choi, A.P. Yu, Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J. Phys. Chem. C 115, 17612–17620 (2011)

    Article  Google Scholar 

  23. Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)

    Article  Google Scholar 

  24. X.J. Lu, F. Zhang, H. Dou, C.Z. Yuan, S.D. Yang, L. Hao, L.F. Shen, L.J. Zhang, X.G. Zhang, Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim. Acta 69, 160–166 (2012)

    Article  Google Scholar 

  25. P. Thi Thuy Phuong, N. Phuc Hoang Duy, V. Tan Tai, N. Huu Huy Phuc, L. Cam Loc, Facile method for synthesis of nanosized β-MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde. Adv. Nat. Sci. 6, 045010 (2015)

    Google Scholar 

  26. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 11, 1158–1161 (2009)

    Article  Google Scholar 

  27. R. Bissessur, K.Y. Peter Liu, S.F. Scully, Intercalation of polypyrrole into graphite oxide. Synth. Met. 156, 1023–1027 (2006)

    Article  Google Scholar 

  28. M.F. Hassan, Z.P. Guo, Z. Chen, H.K. Liu, Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 195, 2372–2376 (2010)

    Article  Google Scholar 

  29. F.H. Hsu, T.M. Wu, Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor. J. Solid State Electrochem. 20, 691–698 (2016)

    Article  Google Scholar 

  30. P. Si, S.J. Ding, X.W. Lou, D.H. Kim, An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors. RSC Adv. 1, 1271–1278 (2011)

    Article  Google Scholar 

  31. H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008)

    Article  Google Scholar 

  32. W.J. Wang, Q.L. Hao, W. Lei, X.F. Xia, X. Wang, Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2, 10268–10274 (2012)

    Article  Google Scholar 

  33. J.H. Liu, J.W. An, Y.X. Ma, M.L. Li, R.B. Ma, Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode batteries and energy storage. J. Electrochem. Soc. 159, A828–A833 (2012)

    Article  Google Scholar 

  34. L. Li, H. Song, Q. Zhang, J. Yao, X. Chen, Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J. Power Sources 187, 268–274 (2009)

    Article  Google Scholar 

  35. Y. Liu, B.H. Zhang, Y.Q. Yang, Z. Chang, Z.B. Wen, Y.P. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J. Mater. Chem. A 1, 13582–13587 (2013)

    Article  Google Scholar 

  36. S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C.K. Das, Graphene-polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54, 1033–1042 (2013)

    Article  Google Scholar 

  37. X. Wang, C. Yang, H.D. Li, P. Liu, Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochim. Acta 111, 729–737 (2013)

    Article  Google Scholar 

  38. J. Wang, Y. Li, J. Ge, B.P. Zhang, W. Wan, Improving photocatalytic performance of ZnO via synergistic effects of Ag nanoparticles and graphene quantum dots. Phys. Chem. Chem. Phys. 17, 18645–18652 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by Ministry of Science and Technology through the project MOST 104-2212-E-005-089-MY2 is greatly appreciated.

Funding

Funding was provided by Ministry of Science and Technology, Taiwan (Grand No. MOST 104-2212-E-005-089-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, FH., Wu, TM. Facile synthesis of polypyrrole/carbon-coated MoO3 nanoparticle/graphene nanoribbon nanocomposite with high-capacitance applied in supercapacitor electrode. J Mater Sci: Mater Electron 29, 382–391 (2018). https://doi.org/10.1007/s10854-017-7927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7927-x

Navigation