Skip to main content
Log in

Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)/Au composite nanotubes were synthesized and developed as an electrode material for a nicotinamide adenine dinucleotide (NADH) sensor. A MnO2 self-degradable template method was used to prepare the tube-like PANI nanomaterial. By introducing PANI nanotubes into Au colloid, Au nanoparticles (NPs) were successfully decorated onto the surface of PANI nanotubes through electrostatic effects. The morphology, composition, and optical properties of the resulting products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption spectra, and thermogravimetric analysis (TGA). In addition, the obtained PANI/Au composites were used as catalysts for the electrochemical oxidation of NADH. Cyclic voltammogram (CV) experiments indicated that PANI/Au-modified glassy carbon electrode showed a higher electrocatalytic activity towards the oxidation of NADH in a neutral environment. Differential pulse voltammogram (DPV) results illustrated that the fabricated NADH sensor had excellent anti-interference ability and displayed a wide linear range from 4 × 10−4 to 8 × 10−3 M with a detection limit of 0.5 × 10−7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leppanen A-S, Xu C, Liu J, Wang X, Pesonen M, Willfor S (2013) Macromol Rapid Commun 34:1056–1061

    Article  Google Scholar 

  2. Diggika RS, Kulkarni MV, Kale GM, Kale BB (2013) J Mater Chem A 1:3992–4001

    Article  Google Scholar 

  3. Shukla VK, Yadav P, Yadav RS, Mishra P, Pandey AC (2012) Nanoscale 4:3886–3893

    Article  CAS  Google Scholar 

  4. Luo Y, Kong D, Jia Y, Luo J, Lu Y, Zhang D, Qiu K, Li CM (2013) Rsc Adv 3:5851–5859

    Article  CAS  Google Scholar 

  5. Li M, Huang X, Wu C, Xu H, Jiang P, Tanaka T (2012) J Mater Chem 22:23477–23484

    Article  CAS  Google Scholar 

  6. Huang JX, Kaner RB (2004) J Am Chem Soc 126:851–855

    Article  CAS  Google Scholar 

  7. Yan W, Feng X, Chen X, Li X, Zhu JJ (2008) Bioelectrochemistry 72:21–27

    Article  CAS  Google Scholar 

  8. Wang X, Yang T, Li X, Jiao K (2011) Biosens Bioelectron 26:2953–2959

    Article  CAS  Google Scholar 

  9. Kesik M, Kanik FE, Hizalan G, Kozanoglu D, Esenturk EN, Timur S, Toppare L (2013) Polymer 54:4463–4471

    Article  CAS  Google Scholar 

  10. Zhang Y, Lin L, Feng Z, Zhou J, Lin Z (2009) Electrochim Acta 55:265–270

    Article  CAS  Google Scholar 

  11. Gu M, Zhang J, Li Y, Jiang L, Zhu JJ (2009) Talanta 80:246–249

    Article  CAS  Google Scholar 

  12. Zhang F, Zeng L, Zhang Y, Wang H, Wu A (2011) Nanoscale 3:2150–2154

    Article  CAS  Google Scholar 

  13. Kundu S, Gill RS, Saraf RF (2011) J Phys Chem C 115:15845–15852

    Article  CAS  Google Scholar 

  14. Song J, Yuan J, Li F, Han D, Song J, Niu L (2010) J Solid State Electrochem 14:1915–1922

    Article  CAS  Google Scholar 

  15. Tang L, Zeng G, Shen G, Zhang Y, Li Y, Fan C, Liu C, Niu C (2009) Anal Bioanal Chem 393:1677–1684

    Article  CAS  Google Scholar 

  16. Liu Y, Hou H, You T (2008) Electroanalysis 20:1708–1713

    Article  Google Scholar 

  17. Aydogdu G, Zeybek DK, Zeybek B, Pekyardimci S (2013) J Appl Electrochem 43:523–531

    Article  CAS  Google Scholar 

  18. Dai Z, Lu G, Bao J, Huang X, Ju H (2007) Electroanalysis 19:604–607

    Article  CAS  Google Scholar 

  19. Lim S, Cho J (2008) Electrochem Commun 10:1478–1481

    Article  CAS  Google Scholar 

  20. Feng X, Li R, Ma Y, Fan Q, Huang W (2011) Synth Met 161:1940–1945

    Article  CAS  Google Scholar 

  21. Pillalamarri SK, Blum FD, Tokuhiro AT, Story JG, Bertino MF (2005) Chem Mater 17:227–229

    Article  CAS  Google Scholar 

  22. Yang F, Cheng K, Wu T, Zhang Y, Yin J, Wang G, Cao D (2013) J Power Sources 233:252–258

    Article  CAS  Google Scholar 

  23. Ubul A, Jamal R, Rahman A, Awut T, Nurulla I, Abdiryim T (2011) Synth Met 161:2097–2102

    Article  CAS  Google Scholar 

  24. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S (2012) Polymer 53:801–809

    Article  CAS  Google Scholar 

  25. Feng XM, Mao CJ, Yang G, Hou WH, Zhu JJ (2006) Langmuir 22:4384–4389

    Article  CAS  Google Scholar 

  26. Jamal R, Xu F, Shao W, Abdiryim T (2013) Nanoscale Res Lett 8:1–8

    Article  CAS  Google Scholar 

  27. Huang JX, Moore JA, Acquaye JH, Kaner RB (2005) Macromolecules 38:317–321

    Article  Google Scholar 

  28. Iranagh SA, Eskandarian L, Mohammadi R (2013) Synth Met 172:49–53

    Article  CAS  Google Scholar 

  29. Li Y, Peng H, Li G, Chen K (2012) Eur Polym J 48:1406–1412

    Article  CAS  Google Scholar 

  30. Mirkin CA (2000) Inorg Chem 39:2258–2272

    Article  CAS  Google Scholar 

  31. Noguez C (2007) J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  32. Chen CC, Gu Y (2008) Biosens Bioelectron 23:765–770

    Article  CAS  Google Scholar 

  33. Prakash S, Rao CRK, Vijayan M (2009) Electrochim Acta 54:5919–5927

    Article  CAS  Google Scholar 

  34. Baba A, Tian SJ, Stefani F, Xia CJ, Wang ZH, Advincula RC, Johannsmann D, Knoll W (2004) J Electroanal Chem 562:95–103

    Article  CAS  Google Scholar 

  35. Bartlett PN, Simon E (2000) Phys Chem Chem Phys 2:2599–2606

    Article  CAS  Google Scholar 

  36. Tsakova V (2008) J Solid State Electrochem 12:1421–1434

    Article  CAS  Google Scholar 

  37. Wang Z, Shoji M, Ogata H (2012) Talanta 99:487–491

    Article  CAS  Google Scholar 

  38. Zare HR, Golabi SM (2000) J Solid State Electrochem 4:87–94

    CAS  Google Scholar 

  39. Zhu L, Zhai J, Yang R, Tian C, Guo L (2007) Biosens Bioelectron 22:2768–2773

    Article  CAS  Google Scholar 

  40. Deng C, Chen J, Chen X, Mao C, Nie Z, Yao S (2008) Electrochem Commun 10:907–909

    Article  CAS  Google Scholar 

  41. Ammam M, Easton EB (2013) J Solid State Electrochem 17:137–143

    Article  CAS  Google Scholar 

  42. Dai ZH, Liu FX, Lu GF, Bao JC (2008) J Solid State Electrochem 12:175–180

    Article  CAS  Google Scholar 

  43. Prasannakumar S, Manjunatha R, Nethravathi C, Suresh GS, Rajamathi M, Venkatesha TV (2012) J Solid State Electrochem 16:3189–3199

    Article  CAS  Google Scholar 

  44. Akhgar MR, Salari M, Zamani H (2011) J Solid State Electrochem 15:845–853

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (nos. 20905038, 20903057, 21105050, and 21005040), National Basic Research Program of China (nos. 2009CB930600, 2012CB933301), Research Fund for the Doctoral Program of Higher Education of China (20113223120004), and the Ministry of Education of China (no. IRT1148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomiao Feng or Wei Huang.

Additional information

Xiaomiao Feng and Yu Zhang contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Zhang, Y., Yan, Z. et al. Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH. J Solid State Electrochem 18, 1717–1723 (2014). https://doi.org/10.1007/s10008-014-2407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2407-1

Keywords

Navigation