Skip to main content
Log in

Graphene-carbon nanotubes modified graphite electrode for the determination of nicotinamide adenine dinucleotide and fabrication of alcohol biosensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Through layer-by-layer adsorption (LBL) technique, the positively charged multiwalled carbon nanotubes (MWCNTs) and negatively charged graphene multilayer film were formed on graphite-poly(diallyldimethylammoniumchloride)-polystyrenesulphonate (Gr/PDDA/PSS) modified electrode. Due to large surface area and remarkable electrocatalytic properties of MWCNTs and graphene, the Gr/(PDDA/PSS-[MWCNTs-NH +3 -graphene-COO]5) electrode exhibits potent electrocatalytic activity towards the electro-oxidation of nicotinamide adenine dinucleotide (NADH). A substantial decrease in the overpotential was observed at modified electrode, and the electrode showed high sensitivity to the electrocatalytic oxidation of NADH. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The diffusion coefficient was calculated by chronocoulometry. Chronoamperometric studies showed the linear relationship between oxidation peak current and the concentration of NADH in the range 25–250 μM (R = 0.999) with the detection limit of 0.1 μM (S/N = 3). Further, dopamine, uric acid, acetaminophen and hydrogen peroxide do not interfere in the detection of NADH. The ability of MWCNTs and graphene to promote the electron transfer between NADH and the electrode exhibits a promising biocompatible platform for development of dehydrogenase-based amperometric biosensors. Alcohol dehydrogenase (ADH) was casted on Gr/(PDDA/PSS-[MWCNTs-NH +3 -graphene-COO]5) electrode; the resulting biosensor showed rapid and high sensitive amperometric response to ethanol with the detection limit of 10 μM (S/N = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Radoi A, Compagone D (2009) Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 76:126–134

    Article  CAS  Google Scholar 

  2. Ge B, Tan Y, Xie Q, Ma M, Yao S (2009) Preparation of chitosan-dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sensors Actuator B 137:547–554

    Article  Google Scholar 

  3. Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikem Y (2008) Meldola blue immobilized on a new SiO2/TiO2/Graphite composite for electrocatalytic oxidation of NADH. Electrochim Acta 53:4167–4175

    Article  CAS  Google Scholar 

  4. Vasilescu A, Andreescu S, Bala C, Litescu SC, Noguer T, Marty JL (2003) Screen-printed electrodes with electropolymerized meldola blue as versatile detectors in biosensors. Biosens Bioelectron 18:781–790

    Article  CAS  Google Scholar 

  5. Gurban AM, Noguer T, Bala C, Rotariu L (2008) Improvement of NADH detection using prussian blue modified screen-printed electrodes and different strategies of immobilization. Sensors Actuators B 128:536–544

    Article  Google Scholar 

  6. Ramesh P, Sivakumar P, Sampath S (2003) Phenoxazine functionalized exfoliated graphite based electrodes for NADH oxidation and ethanol biosensing. Electroanalysis 15:1850–1858

    Article  CAS  Google Scholar 

  7. Gligor D, Dilgin Y, Popescu LC, Gorton L (2009) Poly-phenothiazine derivative modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54:3124–3128

    Article  CAS  Google Scholar 

  8. Ogino Y, Takagi K, Kano K, Ikeda T (1995) Reactions between diaphorase and quinone compounds in bioelectrocatalytic redox reactions of NADH and NAD+. J Electroanal Chem 396:517–524

    Article  Google Scholar 

  9. Ramesh P, Sampath S (2000) A binderless, bulk –modified, renewable surface amperometric sensor for NADH and ethanol. Anal Chem 72:3369–3373

    Article  CAS  Google Scholar 

  10. Matsue T, Suda M, Uchida I (1987) Electrocatalytic oxidation of NADH by ferrocene derivatives and the influence of cyclodextrin complexation. J Electroanal Chem 234:163–173

    Article  CAS  Google Scholar 

  11. Serban S, Murr NE (2004) Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors. Biosens Bioelectron 20:161–166

    Article  CAS  Google Scholar 

  12. Silva FDADS, Lopes CB, Costa EDO, Lima PR, Kubota LT, Oliveria M, Goulart F (2010) Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH. Electrochem Commun 12:450–454

    Article  CAS  Google Scholar 

  13. Mu S, Zhang Y, Zhai J (2009) Electrocatalysis of NADH oxidation by nanostructured Poly(aniline-co-2-amino-4-hydroxybenzenesulphonic acid) and experimental evidence for the catalytic mechanism. Electrochem Commun 11:1960–1963

    Article  CAS  Google Scholar 

  14. Balamurugan A, Chen SM (2008) Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode. Sensors Actuators B 129:850–858

    Article  Google Scholar 

  15. Manesh KM, Santosh P, Gopalan A, Lee KP (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75:1307–1314

    Article  CAS  Google Scholar 

  16. Mano N, Kuhn A (1999) Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation. J Electroanal Chem 477:79–88

    Article  CAS  Google Scholar 

  17. Mano N, Kuhn A (1999) Ca2+ enhanced electrocatalytic oxidation of NADH by immobilized nitro-flurenones. Electrochem Commun 1:497–501

    Article  CAS  Google Scholar 

  18. Banks C, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Article  CAS  Google Scholar 

  19. Wooten M, Gorski W (2010) Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal Chem 82:1299–1304

    Article  CAS  Google Scholar 

  20. Yang DW, Liu HH (2009) Poly(brilliant cresyl blue)-carbon nanotubes modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosens Bioelectron 25:733–738

    Article  Google Scholar 

  21. Luz RDCS, Damos FS, Tanaka AA, Kuboto LT, Gushikem Y (2008) Electrocatalytic activity of 2, 3, 5, 6-tetrachloro-1, 4-benzoquinone/multi-walled carbon nanotubes immobilized on edge plane pyrolitic graphite electrode for NADH oxidation. Electrochim Acta 53:4706–4714

    Article  CAS  Google Scholar 

  22. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  23. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25:1504–1508

    Article  CAS  Google Scholar 

  24. Kang XH, Wang J, Wu H, Aksay I, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  25. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/ AuNPs/ chitosan nanocomposite film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    Article  CAS  Google Scholar 

  26. Zheng H, Okada H, Nojima S, Suye SI, Hori T (2004) Layer-by-layer assembly of enzymes and polymerized mediator on electrode surface by electrostatic adsorption. Sci Technol Adv Mater 5:371–376

    Article  CAS  Google Scholar 

  27. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersion of graphite oxide. Carbon 46:1994–1998

    Article  CAS  Google Scholar 

  28. Su CY, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai CH, Huang Y, Li LJ (2010) Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano 4:5285–5292

    Article  CAS  Google Scholar 

  29. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  30. Prasanna Kumar S, Manjunatha R, Nethravathi C, Suresh GS, Rajamathi M, Venkatesha TV (2011) Electrocatalytic oxidation of NADH on functionalized graphene modified graphite electrode. Electroanalysis 23:842–849

    Article  Google Scholar 

  31. Woo Lee S, Kim BS, Chen S, Shao-Horn Y, Hammond PT (2009) Layer-by-Layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 131:671–679

    Article  Google Scholar 

  32. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functinalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 82:543–549

    Article  CAS  Google Scholar 

  33. Liu A, Wei M, Honma I, Zhou H (2006) Biosensing properties of titanate-nanotube films: selective detection of dopamine in the presence of ascorbate and uric acid. Adv Funct Mater 16:371–376

    Article  CAS  Google Scholar 

  34. Meng L, Wu P, Chen G, Cai C, Sun Y, Yuan Z (2009) Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Biosens Bioelectron 24:1751–1756

    Article  CAS  Google Scholar 

  35. Zeng J, Wei W, Wu L, Liu X, Liu K, Li Y (2006) Fabrication of poly(toluidine blue O)/Carbon Nanotube composite nanowires and its stable low-potential detection of NADH. J Electroanal Chem 595:152–160

    Article  CAS  Google Scholar 

  36. Jensen MA, Elving PJ (1978) Oxidation of l, 4 NADH at a glassy carbon electrode: Effects of pH, lewis acids and adsorption. Bioelectrochem Bioenerg 5:526–534

    Article  CAS  Google Scholar 

  37. Prieto-Simon B, Fabregas E (2006) New redox mediator-modified polysulfone composite films for the development of dehydrogenase-based biosensors. Biosens Bioelectron 22:131–137

    Article  CAS  Google Scholar 

  38. Li M, Jing L (2007) Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite modified electrode. Electrochim Acta 52:3250–3257

    Article  CAS  Google Scholar 

  39. Wang C, Li C, Wang F, Wang C (2006) Covalent modification of glassy carbon electrode with L-Cysteine for the determination of acetoaminophen. Microchim Acta 155:365–371

    Article  CAS  Google Scholar 

  40. Yang M, Qu F, Li Y, He Y, Shen G, Yu R (2007) Direct electrochemistry of hemoglobin in gold nanowire array. Biosens Bioelectron 23:414–420

    Article  CAS  Google Scholar 

  41. Deng C, Chen J, Chen X, Xiao C, Nie Z, Yao S (2008) Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem Commun 10:907–909

    Article  CAS  Google Scholar 

  42. Salami A, Hallaj R, Ghadermazi M (2005) Modification of carbon ceramic electrode prepared with sol-gel technique by thin film of chlorogenic acid: application to amperometric detection of NADH. Talanta 65:888–894

    Article  Google Scholar 

  43. Dai Z, Lu G, Bao J, Huang X, Huangxian (2007) Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode. Electroanalysis 19:604–607

    Article  CAS  Google Scholar 

  44. Rao TN, Yagi I, Miwa T, Tryk DA, Fujishima A (1999) Electrochemical oxidation of NADH at highly boron-doped diamond electrodes. Anal Chem 71:2506–2511

    Article  CAS  Google Scholar 

  45. Yemini M, Reches M, Gazit E, Rishpon J (2005) Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal Chem 77:5155–5159

    Article  CAS  Google Scholar 

  46. Vasantha VS, Chen SM (2006) Synergistic effect of catechin-immobilized poly (3,4- ethylenedioxythiophene)-modified electrode on electrocatalysis of NADH in the presence of ascorbic acid and uric acid. Electrochim Acta 52:665–674

    Article  CAS  Google Scholar 

  47. Pariente F, Tobalina F, Moreno G, Hernandez L, Lorenzo E, Abruna HD (1997) Mechanistic studies of the electrocatalytic oxidation of NADH and ascorbate at glassy carbon electrodes modified with electrodeposited films derived from 3, 4- dihydroxybenzaldehyde. Anal Chem 69:4065–4075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Sri. A.V.S. Murthy, honorary secretary of Rashtreeya Sikshana Samiti Trust, Bangalore and Dr. P. Yashoda, Principal, S.S.M.R.V. Degree College, Bangalore for their continuous support and encouragement. S. Prasanna Kumar personally thank Fr. Roshan Lobo, Principal, St. Joseph’s Pre-University College, Bangalore for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurukar Shivappa Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasannakumar, S., Manjunatha, R., Nethravathi, C. et al. Graphene-carbon nanotubes modified graphite electrode for the determination of nicotinamide adenine dinucleotide and fabrication of alcohol biosensor. J Solid State Electrochem 16, 3189–3199 (2012). https://doi.org/10.1007/s10008-012-1754-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1754-z

Keywords

Navigation