Skip to main content
Log in

Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The redox response of a modified carbon nanotube paste electrode of ferrocenedicarboxylic acid was investigated. Cyclic voltammetry, differential pulse voltammetry, and chronoamperometry were used to investigate the electrochemical behavior of levodopa (LD) at modified electrode. Under the optimized conditions (pH 5.0), the modified electrode showed high electrocatalytic activity toward LD oxidation; the overpotential for the oxidation of LD was decreased by more than 190 mV, and the corresponding peak current increased significantly. Differential pulse voltammetric peak currents of LD increased linearly with its concentrations at the range of 0.04 to 1,100 μM, and the detection limit (3σ) was determined to be 12 nM. The diffusion coefficient \( \left( {D = {9}.{2} \times {1}{0^{ - {6}}}{\hbox{c}}{{\hbox{m}}^2}/{\hbox{s}}} \right) \) and transfer coefficient (α = 0.49) of LD were also determined. Mixture of LD, NADH, and tryptophan (TRP) can be separated from one another by differential pulse voltammetry. These conditions are sufficient to allow determination of LD, NADH, and TRP both individually and simultaneously. The modified electrode showed good reproducibility, remarkable long-term stability, and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for determination of LD, NADH, and TRP in real samples such as urine and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Adekunle AS, Ozoemena KI (2008) J Solid State Electrochem 12:1325

    Article  CAS  Google Scholar 

  3. Zheng L, Song JF (2010) J Solid State Electrochem 14:43

    Article  CAS  Google Scholar 

  4. Wang Y, Wei W, Zeng J, Liu X, Zeng X (2008) Microchim Acta 160:253

    Article  CAS  Google Scholar 

  5. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Anal Chem 80:9848

    Article  CAS  Google Scholar 

  6. Shahrokhian S, Amiri M (2007) Microchim Acta 157:149

    Article  CAS  Google Scholar 

  7. Beitollahi H, Mazloum Ardakani M, Naeimi H, Ganjipour B (2009) J Solid State Electrochem 13:353

    Article  CAS  Google Scholar 

  8. Chen J, Lin Z, Chen G (2007) Anal Bioanal Chem 388:399

    Article  CAS  Google Scholar 

  9. Beitollahi H, Mazloum Ardakani M, Ganjipour B, Naeimi H (2008) Biosens Bioelectron 24:362

    Article  CAS  Google Scholar 

  10. Lawrence NS, Deo RP, Wang J (2004) Talanta 63:443

    Article  CAS  Google Scholar 

  11. Melamed E, Offen D, Shirvan A, Ziv I (2000) J Neurol 247:135

    Google Scholar 

  12. Cannazza G, Stefano AD, Mosciatti B, Braghiroli D, Baraldi M, Pinnen F, Sozio P, Benatti C, Parenti C (2005) J Pharm Biomed Anal 36:1079

    Article  CAS  Google Scholar 

  13. Madrakian T, Afkhami A, Mohammadnejad M (2009) Talanta 78:1051

    Article  CAS  Google Scholar 

  14. Shen CY (1992) Chin J Anal Chem 20:1150

    CAS  Google Scholar 

  15. Marcolino-Junior LH, Teixeira MFS, Pereira AV, Fatibello-Filho O (2001) J Pharm Biomed Anal 25:393

    Article  CAS  Google Scholar 

  16. Hyun Kim W, Karim MM, Lee SH (2008) Anal Chim Acta 619:2

    Article  Google Scholar 

  17. Martinez-Lozano C, Perez-Ruiz T, Tomas V, Val O (1991) Analyst 116:857

    Article  CAS  Google Scholar 

  18. Aslanoglu M, Kutluay A, Goktas S, Karabulut S (2009) J Chem Sci 121:209

    Article  CAS  Google Scholar 

  19. Daneshgar P, Norouzi P, Ganjali MR, Ordikhani-Seyedlar A, Eshraghi H (2009) Colloids Surf B 68:27

    Article  CAS  Google Scholar 

  20. Shahrokhian S, Asadian E (2009) J Electroanal Chem 636:40

    Article  CAS  Google Scholar 

  21. Teixeira MFS, Marcolino-Júnior LH, Fatibello-Filho O, Dockal ER, Bergamini MF (2007) Sens Actuators B 122:549

    Article  Google Scholar 

  22. Banks CE, Compton RG (2005) Analyst 130:1232

    Article  CAS  Google Scholar 

  23. Jena BK, Raj CR (2005) Chem Commun 15:2005

    Google Scholar 

  24. Dai ZH, Liu FX, Lu GF, Bao JC (2008) J Solid State Electrochem 12:175

    Article  CAS  Google Scholar 

  25. Tang L, Zeng G, Shen G, Zhang Y, Li Y, Fan C, Liu C, Niu C (2009) Anal Bioanal Chem 393:1677

    Article  CAS  Google Scholar 

  26. Ioana Ladiu C, Popescu IC, Gorton L (2005) J Solid State Electrochem 9:296

    Article  Google Scholar 

  27. Gurban AM, Noguer T, Bala C, Rotariu L (2008) Sens Actuators B 128:536

    Article  Google Scholar 

  28. Radoi A, Compagnone D, Valcarcel MA, Placidi P, Materazzi S, Moscone D, Palleschi G (2008) Electrochim Acta 53:2161

    Article  CAS  Google Scholar 

  29. Shana C, Yang H, Hana D, Zhang Q, Ivaska A, Niu L (2010) Biosens Bioelectron 25:1504

    Article  Google Scholar 

  30. Radoi A, Compagnone D (2009) Bioelectrochemistry 76:126

    Article  CAS  Google Scholar 

  31. Fiorucci AR, Cavalheiro ETG (2002) J Pharm Biomed Anal 28:909

    Article  CAS  Google Scholar 

  32. Fang B, Wei Y, Li MG, Wang GF, Zhang W (2007) Talanta 72:1302

    Article  CAS  Google Scholar 

  33. Kochen W, Steinhart H (1994) l-Tryptophan—current prospects in medicine and drug safety. de-Gruyter, Berlin

    Google Scholar 

  34. Tanga X, Liua Y, Houb H, Youa T (2010) Talanta 80:2182

    Article  Google Scholar 

  35. Li C, Ya Y, Zhan G (2010) Colloids Surf B 76:340

    Article  CAS  Google Scholar 

  36. Matsunaga M, Ueno T, Nakanishi T, Osaka T (2008) Electrochem Commun 10:1844

    Article  CAS  Google Scholar 

  37. Rogério Fiorucci A, Cavalheiro ETG (2002) J Pharm Biomed Anal 28:909

    Article  Google Scholar 

  38. Raoof JB, Ojani R, Beitollahi H (2007) Electroanalysis 19:1822

    Article  CAS  Google Scholar 

  39. Ensafi AA, Karimi-Maleh H (2010) J Electroanal Chem 640:75

    Article  CAS  Google Scholar 

  40. Raoof JB, Ojani R, Beitollahi H, Hosseinzadeh R (2006) Anal Sci 22:1213

    Article  CAS  Google Scholar 

  41. Kuhn W, Muller T, Winkel R, Danielczik S, Gerstner A, Hacker R, Mattern C, Przuntek H (1996) J Neural Transm 103:1187

    Article  CAS  Google Scholar 

  42. Lehmann J (1973) Acta Med Scand 194:181

    Article  CAS  Google Scholar 

  43. Lehmann J (1971) Lancet 1:140

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  45. Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood, New York

    Google Scholar 

  46. Hu G, Chen L, Guo Y, Wang X, Shao S (2010) Electrochim Acta 55:4711

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Salari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhgar, M.R., Salari, M. & Zamani, H. Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem 15, 845–853 (2011). https://doi.org/10.1007/s10008-010-1158-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1158-x

Keywords

Navigation