Skip to main content
Log in

Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we have fabricated activated carbon electrodes using the binder LA135 and assembled electrical double layer capacitors with nonaqueous electrolytes of 1 M tetraethyl ammonium tetrafluoroborate (Et4NBF4) in propylene carbonate (PC), 1 M Et4NBF4 in acetonitrile (AN), and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid, respectively. The main chemical compositions of the binder are polyacrylonitrile and styrene–butadiene rubber. Scanning electron microscope images show that the conductive agents have been uniformly dispersed on the activated carbons in the electrode. The thermal stabilities of electrodes using different binders are studied by thermogravimetric analysis. The electrochemical properties of cells in different nonaqueous electrolytes are characterized by cyclic voltagramms, electrochemical impedance spectra, galvanostatic charge–discharge, leakage current, and cycle life measurements. The capacitor in Et4NBF4/AN has the lowest internal resistance and superior high-rate capability, and the one in Et4NBF4/PC has the smallest leakage current. The capacitor in EMIMBF4 has the energy density as high as 35.4 Wh kg−1 at a current density of 0.2 A g−1 (based on the total mass of active materials), which is 1.6 times higher than that of capacitor in PC electrolyte. Besides, the electrochemical properties of capacitors with different binders are comparatively studied. The capacitor using LA135 has the highest specific capacitance and moderate internal resistance comparing with the ones using poly(tetrafluoroethylene), sodium carboxymethyl cellulose + styrene–butadiene rubber or poly (vinylidene fluoride).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Materials science - electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Miller JR (2012) Valuing reversible energy storage. Science 335:1312–1313

    Article  CAS  Google Scholar 

  3. Böckenfeld N, Jeong SS, Winter M, Passerini S, Balducci A (2013) Natural, cheap and environmentally friendly binder for supercapacitors. J Power Sources 221:14–20

    Article  Google Scholar 

  4. Xu J, Chou S-L, Gu Q-f, Liu H-K, Dou S-X (2013) The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. J Power Sources 225:172–178

    Article  CAS  Google Scholar 

  5. Sun XZ, Zhang X, Zhang HT, Zhang DC, Ma YW (2012) A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. J Solid State Electrochem 16:2597–2603

    Article  CAS  Google Scholar 

  6. Stoller MD, Stoller SA, Quarles N, Suk JW, Murali S, Zhu YW, Zhu XJ, Ruoff RS (2011) Using coin cells for ultracapacitor electrode material testing. J Appl Electrochem 41:681–686

    Article  CAS  Google Scholar 

  7. Chen Y, Zhang X, Zhang HT, Sun XZ, Zhang DC, Ma YW (2012) High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Adv 2:7747–7753

    Article  CAS  Google Scholar 

  8. Zheng HH, Yang RZ, Liu G, Song XY, Battaglia VS (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C 116:4875–4882

    Article  CAS  Google Scholar 

  9. Zhang X, Sun XZ, Chen Y, Zhang DC, Ma YW (2012) One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater Lett 68:336–339

    Article  CAS  Google Scholar 

  10. Buqa H, Holzapfel M, Krumeich F, Veit C, Novak P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622

    Article  CAS  Google Scholar 

  11. Liu SQ, Liu SQ, Huang KL, Liu JS, Li YK, Fang D, Wang HM, Xia YF (2012) A novel Et4NBF4 and LiPF6 blend salts electrolyte for supercapacitor battery. J Solid State Electrochem 16:1631–1634

    Article  CAS  Google Scholar 

  12. Munteanu SB, Vasile C (2005) Spectral and thermal characterization of styrene-butadiene copolymers with different architectures. J Optoelectron Adv M 7:3135–3148

    CAS  Google Scholar 

  13. Conley RT, Bieron JF (1963) Examination of the oxidative degradation of polyacrylonitrile using infrared spectroscopy. J Appl Polym Sci 7:1757–1773

    Article  CAS  Google Scholar 

  14. Rodler M, Blom CE, Bauder A (1984) Infrared spectrum and general valence force field of syn-vinyl alcohol. J Am Chem Soc 106:4029–4403

    Article  CAS  Google Scholar 

  15. Juneja HD, Joshi M, Khati NT (2011) Synthesis and structural studies of some inorganic polymers of succinoyl carboxymethyl cellulose. E-J CHEM 8:1993–1999

    Article  CAS  Google Scholar 

  16. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565

    Article  CAS  Google Scholar 

  17. Chen C, Chen XY, Xie DH (2013) Synthesis of nitrogen doped porous carbons from sodium carboxymethyl cellulose and the capacitive performance. Acta Phys-Chim Sin 29:102–110

    Google Scholar 

  18. Wang D-W, Li F, Cheng H-M (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568

    Article  CAS  Google Scholar 

  19. Zhou J, Xing W, Zhuo SP, Zhao Y (2011) Capacitive performance of ordered mesoporous carbons with tunable porous texture in ionic liquid electrolytes. Solid State Sci 13:2000–2006

    Article  CAS  Google Scholar 

  20. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim Acta 49:905–912

    Article  CAS  Google Scholar 

  21. Zhao SH, Wu F, Yang LX, Gao LJ, Burke AF (2010) A measurement method for determination of dc internal resistance of batteries and supercapacitors. Electrochem Commun 12:242–245

    Article  CAS  Google Scholar 

  22. Demarconnay L, Raymundo-Pinero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 12:1275–1278

    Article  CAS  Google Scholar 

  23. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799–2805

    Article  CAS  Google Scholar 

  24. Sun XZ, Zhang X, Zhang DC, Ma YW (2012) Activated carbon-based supercapacitors using Li2SO4 aqueous electrolyte. Acta Phys-Chim Sin 28:367–372

    CAS  Google Scholar 

  25. Takeuchi M, Koike K, Mogami A, Maruyama T (2002) Electric double-layer capacitor and carbon material therefor. US patent application 20020039275A1

  26. Cericola D, Ruch PW, Foelske-Schmitz A, Weingarth D, Kötz R (2011) Effect of water on the aging of activated carbon based electrochemical double layer capacitors during constant voltage load tests. Int J Electrochem Sci 6:988–996

    CAS  Google Scholar 

  27. Béguin F, Jurewicz K, Frackowiak E (2004) Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl Phys A 78:981–987

    Article  Google Scholar 

  28. Azaïs P, Duclaux L, Florian P, Massiot D, Lillo-Rodenas M-A, Linares-Solano A, Peres J-P, Jehoulet C, Béguin F (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053

    Article  Google Scholar 

  29. Babel K, Janasiak D, Jurewicz K (2012) Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 50:5017–5026

    Article  CAS  Google Scholar 

  30. Hahn M, Wursig A, Gallay R, Novak P, Kötz R (2005) Gas evolution in activated carbon/propylene carbonate based double-layer capacitors. Electrochem Commun 7:925–930

    Article  CAS  Google Scholar 

  31. Ruch PW, Cericola D, Foelske A, Kötz R, Wokaun A (2010) A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochim Acta 55:2352–2357

    Article  CAS  Google Scholar 

  32. Ruch PW, Cericola D, Foelske-Schmitz A, Kötz R, Wokaun A (2010) Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages. Electrochim Acta 55:4412–4420

    Article  CAS  Google Scholar 

  33. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energ Environ Sci 5:5842–5850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (no. KJCX2-YW-W26), the Science and Technology Project of Beijing, China (no. Z111100056011007), and the National Natural Science Foundation of China (nos. 21001103 and 51025726). One of the authors would like to thank Dr. F. Ye (IPE, CAS) and Dr. H. Luo (GIEC, CAS) for their help in FT-IR measurements and analysis of EMIMBF4 (the results are not shown in the paper). Mr. K. Yoshioka (JCC) and Mr. M. Takahashi (JCK) are acknowledged for providing samples of etched aluminum foil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Zhang, X., Zhang, H. et al. Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes. J Solid State Electrochem 17, 2035–2042 (2013). https://doi.org/10.1007/s10008-013-2051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2051-1

Keywords

Navigation