Skip to main content

Advertisement

Log in

A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we have prepared activated carbon (AC)-based symmetric supercapacitor (SC) using Li2SO4 aqueous electrolyte instead of H2SO4 and KOH and obtained a device with an improved cell voltage window (CVW) of 0 − 1.6 V from 0 to 1.0 V. The SC using KOH electrolyte is also fabricated for comparison. The electrochemical characteristics of SCs such as cyclic voltammetry (CV), galvanostatic charge–discharge, electrochemical impedance spectroscopy (EIS) and cycle stability are investigated systematically. The possible redox reactions of electrodes that occurred in Li2SO4 and KOH electrolytes that restrict the CVWs are discussed. The results indicate that in the case of Li2SO4, the AC electrode can deliver a specific capacitance of 210 F g−1 at a current density of 0.1 A g−1, and the energy density of capacitor can be as high as 16.9 Wh kg−1 at 200 W kg−1 (based on the total mass of active electrode materials), 80% higher than that in the case of KOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Xu B, Yue SF, Sui ZY, Zhang XT, Hou SS, Cao GP, Yang YS (2011) Energ Environ Sci 4:2826–2830

    Article  CAS  Google Scholar 

  5. Wang XY, Liu L, Wang XY, Bai L, Wu H, Zhang XY, Yi LH, Chen QQ (2011) J Solid State Electrochem 15:643–648

    Article  CAS  Google Scholar 

  6. Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ (2009) Carbon 47:1715–1722

    Article  CAS  Google Scholar 

  7. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Carbon 44:216–224

    Article  CAS  Google Scholar 

  8. Kong LB, Liu MC, Lang JW, Liu M, Luo YC, Kang L (2011) J Solid State Electrochem 15:571–577

    Article  CAS  Google Scholar 

  9. Zhang X, Sun XZ, Chen Y, Zhang DC, Ma YW (2012) Mater Lett 68:336–339

    Article  CAS  Google Scholar 

  10. Zhao DD, Yang Z, Kong ESW, Xu CL, Zhang YF (2011) J Solid State Electrochem 15:1235–1242

    Article  CAS  Google Scholar 

  11. Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma YW (2011) J Power Sources 196:5990–5996

    Article  CAS  Google Scholar 

  12. Zhang Q, Rong JP, Ma DS, Wei BQ (2011) Energ Environ Sci 4:2152–2159

    Article  CAS  Google Scholar 

  13. Deng L, Zhu G, Wang J, Kang L, Liu Z-H, Yang Z, Wang Z (2011) J Power Sources 196:10782–10787

    Article  CAS  Google Scholar 

  14. Li WC, Gao PC, Lu AH (2011) J Power Sources 196:4095–4101

    Article  Google Scholar 

  15. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Nat Mater 9:146–151

    Article  CAS  Google Scholar 

  16. Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Zhu K (2011) Chem Commun 47:10058–10060

    Article  CAS  Google Scholar 

  17. Hu GX, Li CX, Gong H (2010) J Power Sources 195:6977–6981

    Article  CAS  Google Scholar 

  18. Wen ZB, Tian S, Qu QT, Wu YP (2011) Prog Chem 23:589–594

    CAS  Google Scholar 

  19. Li JM, Chang KH, Hu CC (2010) Electrochem Commun 12:1800–1803

    Article  CAS  Google Scholar 

  20. Lin YP, Wu NL (2011) J Power Sources 196:851–854

    Article  CAS  Google Scholar 

  21. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Electrochem Commun 10:1652–1655

    Article  CAS  Google Scholar 

  22. Demarconnay L, Raymundo-Piñero E, Béguin F (2010) Electrochem Commun 12:1275–1278

    Article  CAS  Google Scholar 

  23. Yang X, He Y-S, Jiang G, Liao X-Z, Ma Z-F (2011) Electrochem Commun 13:1166–1169

    Article  CAS  Google Scholar 

  24. Wang D-W, Li F, Cheng H-M (2008) J Power Sources 185:1563–1568

    Article  CAS  Google Scholar 

  25. Liu XM, Wang YL, Zhan LA, Qiao WM, Liang XY, Ling LC (2011) J Solid State Electrochem 15:413–419

    Article  CAS  Google Scholar 

  26. Bao QL, Bao SJ, Li CM, Qi X, Pan CX, Zang JF, Lu ZS, Li YB, Tang DY, Zhang S, Lian K (2008) J Phys Chem C 112:3612–3618

    Article  CAS  Google Scholar 

  27. Béguin F, Jurewicz K, Frackowiak E (2004) Appl Phys A 78:981–987

    Article  Google Scholar 

  28. Endo M, Kim YJ, Takeda T, Maeda T, Hayashi T, Koshiba K, Hara H, Dresselhaus MS (2001) J Electrochem Soc 148:A1135–A1140

    Article  CAS  Google Scholar 

  29. Xu C, Du H, Li B, Kang F, Zeng Y (2009) J Electrochem Soc 156:A435–A441

    Article  CAS  Google Scholar 

  30. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Google Scholar 

  31. de Levie R (1963) Electrochim Acta 8:751–780

    Article  Google Scholar 

  32. Keiser H, Beccu KD, Gutjahr MA (1976) Electrochim Acta 21:539–543

    Article  CAS  Google Scholar 

  33. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  34. Kim C-H, Pyun S-I, Shin H-C (2002) J Electrochem Soc 149:A93–A98

    Article  CAS  Google Scholar 

  35. Miller JR (1995) In: Denlick FM, Tomkiewicz M, (ed) Proceedings of the Symposium on Electrochemical Capacitors: Pennington, NJ; 1995. p. 246.

  36. Mosqueda HA, Crosnier O, Athouël L, Dandeville Y, Scudeller Y, Guillemet P, Schleich DM, Brousse T (2010) Electrochim Acta 55:7479–7483

    Article  CAS  Google Scholar 

  37. Lewandowski A, Olejniczak A, Galinski M, Stepniak I (2010) J Power Sources 195:5814–5819

    Article  CAS  Google Scholar 

  38. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Electrochim Acta 49:905–912

    Article  CAS  Google Scholar 

  39. Tian Y, Yan JW, Xue R, Yi BL (2011) J Electrochem Soc 158:A818–A821

    Article  CAS  Google Scholar 

  40. Sun XZ, Zhang X, Zhang DC, Ma YW (2012) Acta Phys Chim Sin 28:367–372

    CAS  Google Scholar 

  41. Chen Y, Zhang X, Yu P, Ma YW (2009) Chem Commun 30:4527–4529

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KJCX2-YW-W26), the Science and Technology Project of Beijing, China (No. Z111100056011007) and the National Natural Science Foundation of China (Nos. 21001103 and 51025726).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Zhang, X., Zhang, H. et al. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. J Solid State Electrochem 16, 2597–2603 (2012). https://doi.org/10.1007/s10008-012-1678-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1678-7

Keywords

Navigation