Skip to main content
Log in

Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline layers are produced by electrochemical polymerisation of aniline in the presence of small amounts of poly(2-acryalamido-2-methyl-propane-sulfonic acid) in an inorganic acid solution. Electroactivity and in situ conductance of the obtained polysulfonic acid-doped layers are studied in slightly acidic and neutral solutions. Electroless deposition of silver particles is carried out in silver-EDTA complex ion solutions at pH = 4.2 and pH = 6.6 by using the polyaniline layers as reductant. The amount of electroless-deposited silver is studied depending on: polymerisation charge used to synthesize the polymer layer, pH of the plating solution, metal ion concentration and dipping time. SEM shows in all cases a highly non-homogeneous distribution of the metallic phase over the surface, the most protruding fibrillar polymer structures favouring the electroless silver deposition. A linear dependence between amount of the polyaniline material and amount of deposited silver is found for the silver plating solutions with the highest investigated concentration (10 mmol l−1). At lower concentrations (2.0 and 0.4 mmol l−1), the same amount of silver becomes deposited on polymer layers with markedly different charges. The electroless deposition of silver in the solutions with lower acidity results in lower amounts of deposited silver at otherwise identical conditions. Effects such as charge transfer within the polymer phase and mass transport in the solution are addressed to explain the observed dependencies of the amount of deposited silver on concentration and pH in the different plating solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Inzelt G (2008) Conducting polymers. A new era in electrochemistry. Springer, Berlin

    Google Scholar 

  2. Tsakova V (2008) J Solid State Electrochem 12:1421

    Article  CAS  Google Scholar 

  3. Tsakova V (2010) In: Eftekhari A (ed) Nanostructured conductive polymers. Wiley, Chichester, p 289

    Chapter  Google Scholar 

  4. Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) Chem Mater 17:5941

    Article  CAS  Google Scholar 

  5. Khanna PK, Singh N, Charan S, Viswanath AK (2005) Mat Chem Phys 92:214

    Article  CAS  Google Scholar 

  6. Du J, Liu Z, Han B, Li Z, Zhang J, Huang Y (2005) Micropor Mesopor Mater 84:254

    Article  CAS  Google Scholar 

  7. Huang LM, Tsai CC, Wen TC, Gopalan A (2006) J Polym Sci A 44:3843

    Article  CAS  Google Scholar 

  8. Huang LM, Wen TC (2007) Mat Sci Engineer A 445–446:7

    Article  Google Scholar 

  9. Neelgund G, Hrehorova E, Joyce M, Bliznyuk V (2008) Polym Int 57:1083

    Article  CAS  Google Scholar 

  10. De Barros RA, De Azevedo WM (2008) Synth Met 158:922

    Article  Google Scholar 

  11. Lee Y, Park J, Jun Y, Kim D, Lee J, Kim Y, Oh S (2008) Synth Met 158:143

    Article  CAS  Google Scholar 

  12. Li X, Gao Y, Liu F, Gong J, Qu L (2009) Mater Lett 63:467

    Article  CAS  Google Scholar 

  13. Blinova NV, Stejskal J, Trchová M, Sapurina I, Ciric’-Marjanovic G (2009) Polymer 50:50

    Article  CAS  Google Scholar 

  14. Gniadek M, Bak E, Stojek Z, Donten M (2010) J Solid State Electrochem 14:1303

    Article  CAS  Google Scholar 

  15. Bober P, Trchova M, Prokes J, Varga M, Stejskal J (2011) Electrochim Acta 56:3580

    Article  CAS  Google Scholar 

  16. Garai A, Chatterjee S, Nandi AK (2010) Polym Eng Sci 50:446

    Article  CAS  Google Scholar 

  17. Dimeska R, Murray PS, Ralph SF, Wallace GG (2006) Polymer 47:4520

    Article  CAS  Google Scholar 

  18. Bouazza S, Alonzo V, Hauchard D (2009) Synth Met 159:1612

    Article  CAS  Google Scholar 

  19. Stejskal J, Prokes J, Sapurina I (2009) Mater Lett 63:709

    Article  CAS  Google Scholar 

  20. Stejskal J, Trchová M, Brozová L, Prokes J (2009) Chem Pap 63:77

    Article  CAS  Google Scholar 

  21. Stejskal J, Trchová M, Kovárová J, Brozová L, Prokes J (2009) React Funct Polym 69:86

    Article  CAS  Google Scholar 

  22. Zhang AQ, Cui CQ, Lee JY, Loh FC (1995) J Electrochem Soc 142:1097

    Article  CAS  Google Scholar 

  23. Ivanov S, Tsakova V (2005) Electrochim Acta 50:5616

    Article  CAS  Google Scholar 

  24. Wang HL, Li W, Jia QX, Akhadov E (2007) Chem Mater 19:520

    Article  Google Scholar 

  25. Tsakova V, Milchev A (1991) Electrochim Acta 36:1151

    Article  CAS  Google Scholar 

  26. Hernandez N, Ortega JM, Choy M, Ortiz R (2001) J Electroanal Chem 515:123

    Article  CAS  Google Scholar 

  27. Ivanov S, Tsakova V (2004) Electrochim Acta 49:913

    Article  CAS  Google Scholar 

  28. Ocypa M, Ptasinska M, Michalska A, Maksymiuk K, Hall EAH (2006) J Electroanal Chem 596:157

    Article  CAS  Google Scholar 

  29. Welch CM, Banks CE, Simm AO, Compton RG (2005) Anal Bioanal Chem 382:12

    Article  CAS  Google Scholar 

  30. Cui K, Song YH, Yao Y, Huang ZZ, Wang L (2008) Electrochem Commun 10:663

    Article  CAS  Google Scholar 

  31. Zhao B, Liu Z, Liu Zh, Liu G, Li Zh, Wang J, Dong X (2009) Electrochem Commun 11:1707

    Article  CAS  Google Scholar 

  32. Quan H, Park SU, Park J (2010) Electrochim Acta 55:2232

    Article  CAS  Google Scholar 

  33. Lin L, Qiu P, Cao X, Jin L (2008) Electrochim Acta 53:5368

    Article  CAS  Google Scholar 

  34. Tashkhourian J, Hormozi Nezhad MR, Khodavesi J, Javadi S (2009) J Electroanal Chem 633:85

    Article  CAS  Google Scholar 

  35. Yang GW, Gao GY, Wang C, Xu CL, Li HL (2008) Carbon 46:747

    Article  CAS  Google Scholar 

  36. Taheri A, Noroozifar M, Khorasani-Motlagh M (2009) J Electroanal Chem 628:48

    Article  CAS  Google Scholar 

  37. Qin X, Wang H, Mao Z, Wang X, Fang Y, Chen Q, Shao X (2011) Talanta. doi:10.1016/j.talanta.2011.01.064.

  38. Rai M, Yadav A, Gade A (2009) Biotechnol Advances 27:76

    Article  CAS  Google Scholar 

  39. Lyutov V, Georgiev G, Tsakova V (2009) Thin Solid Films 517:6681

    Article  CAS  Google Scholar 

  40. Lyutov V, Tsakova V, Bund A (2011) Electrochim Acta 56:4803

    Article  CAS  Google Scholar 

  41. Hao Q, Kulikov V, Mirsky VM (2003) Sens Act B 94:352

    Article  Google Scholar 

  42. Kulikov V, Mirsky VM, Delaney T, Donoval D, Koch AW, Wolfbeis OS (2005) Meas Sci Technol 16:95

    Article  CAS  Google Scholar 

  43. Lange U, Mirsky VM (2008) J Electroanal Chem 622:246

    Article  CAS  Google Scholar 

  44. Skoog DA, West DM, Heller FJ, Crouch SR (2004) Fundamentals of Analytical Chemistry. Thomson-Brooks/Cole, New York

    Google Scholar 

  45. Yue J, Wang ZH, Cromack KR, Epstein AJ, MacDiarmid AG (1991) J Am Chem Soc 113:2665

    Article  CAS  Google Scholar 

  46. Xu JJ, Zhou DM, Chen HY (1998) Fresenius J Anal Chem 362:234

    Article  CAS  Google Scholar 

  47. Milzcarek G (2007) Electrochem Commun 9:123

    Article  Google Scholar 

  48. Tarver J, Yoo JE, Dennes TJ, Schwartz J, Loo YL (2009) Chem Mater 21:280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the opportunity to carry out in situ conductivity measurements in the group of Prof. V.M. Mirsky at the University of Regensburg (now at the University of Senftenberg), Germany. Financial support provided by the Bulgarian Ministry of Education and Science and DAAD under project DAAD 07/2007 is gratefully acknowledged. SEM pictures were obtained with the kind support of Ts. Tsacheva from the Laboratory of Electron Microscopy at Institute of Physical Chemistry, Sofia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vessela Tsakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyutov, V., Tsakova, V. Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. J Solid State Electrochem 15, 2553–2561 (2011). https://doi.org/10.1007/s10008-011-1451-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1451-3

Keywords

Navigation