Skip to main content

Advertisement

Log in

Use of 3-D printing technologies in craniomaxillofacial surgery: a review

  • Review Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) printing is a method of manufacturing in which materials like plastic or metal are deposited onto one another in layers to produce a 3-D object. Because of the complex anatomy of craniomaxillofacial structures, full recovery of craniomaxillofacial tissues from trauma, surgeries, or congenital malformations is extremely challenging. 3-D printing of scaffolds, tissue analogs, and organs has been proposed as an exciting alternative to address some of these key challenges in craniomaxillofacial surgery. There are four broad types of 3-D printing surgical applications that can be used in craniomaxillofacial surgery: contour models (positive-space models to allow preapplication of hardware before surgery), guides (negative-space models of actual patient data to guide cutting and drilling), splints (negative-space models of virtual postoperative positions to guide final alignment), and implants (negative-space 3-D printed implantable materials or 3-D printed molds into which nonprintable materials are poured). 3-D printing technology is being successfully used for surgeries for head and neck malignancies, mandibular reconstruction, orthognathic surgeries, for mandibulectomies after osteoradionecrosis, orbital floor fracture surgeries, nasal reconstruction, and cranioplasties. The excitement behind 3-D printing continues to increase and hopefully will drive improvements in the technology and its surgical applications, especially in craniomaxillofacial region. This present review sets out to explore use of 3-D printing technologies in craniomaxillofacial surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schubert C, van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98:159–161. https://doi.org/10.1136/bjophthalmol-2013-304446

    Article  PubMed  Google Scholar 

  2. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE (2015) Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 94:143S–152S. https://doi.org/10.1177/0022034515588885

    Article  PubMed  CAS  Google Scholar 

  3. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926. https://doi.org/10.1126/science.1226340

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs CA, Lin AY (2017) A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery. Plast Reconstr Surg 139:1211–1220. https://doi.org/10.1097/PRS.0000000000003232

    Article  PubMed  CAS  Google Scholar 

  5. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124. https://doi.org/10.1007/s10856-005-4716-5

    Article  PubMed  CAS  Google Scholar 

  6. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13:2634–2639. https://doi.org/10.1021/nl4007744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Haumont T, Rahman T, Sample W, M. King M, Church C, Henley J, Jayakumar S (2011) Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop 31:e44–e49. https://doi.org/10.1097/BPO.0b013e31821f50b5

    Article  PubMed  Google Scholar 

  8. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043–2045. https://doi.org/10.1056/NEJMc1206319

    Article  PubMed  CAS  Google Scholar 

  9. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474. https://doi.org/10.1038/srep24474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jeong JH, Chan V, Cha C, Zorlutuna P, Dyck C, Hsia KJ, Bashir R, Kong H (2012) “Living” microvascular stamp for patterning of functional neovessels; orchestrated control of matrix property and geometry. Adv Mater Deerfield Beach Fla 24(1):58–63. https://doi.org/10.1002/adma.201103207

    Article  CAS  Google Scholar 

  11. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768–774. https://doi.org/10.1038/nmat3357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet Lond Engl 367:1241–1246. https://doi.org/10.1016/S0140-6736(06)68438-9

    Article  Google Scholar 

  13. History of 3D printing timeline: who invented 3D printing—3D insider. http://3dinsider.com/3d-printing-history/. Accessed 22 Oct 2017

  14. History of 3D printing: it’s older than you think. https://www.autodesk.com/redshift/history-of-3d-printing/. Accessed 22 Oct 2017

  15. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  PubMed  CAS  Google Scholar 

  16. Fedorovich NE, Alblas J, Hennink WE, Öner FC, Dhert WJA (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29:601–606. https://doi.org/10.1016/j.tibtech.2011.07.001

    Article  PubMed  CAS  Google Scholar 

  17. Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15:115. https://doi.org/10.1186/s12938-016-0236-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J (2009) Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:661–666. https://doi.org/10.1016/j.tripleo.2009.05.023

    Article  PubMed  Google Scholar 

  19. Azuma M, Yanagawa T, Ishibashi-Kanno N et al (2014) Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med 10:45. https://doi.org/10.1186/1746-160X-10-45

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Xu L, Zhu H, Liu SS-Y (2014) Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng Online 13:63. https://doi.org/10.1186/1475-925X-13-63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yamada H, Nakaoka K, Horiuchi T, Kumagai K, Ikawa T, Shigeta Y, Imamura E, Iino M, Ogawa T, Hamada Y (2014) Mandibular reconstruction using custom-made titanium mesh tray and particulate cancellous bone and marrow harvested from bilateral posterior ilia. J Plast Surg Hand Surg 48:183–190. https://doi.org/10.3109/2000656X.2013.848809

    Article  PubMed  Google Scholar 

  22. Adolphs N, Liu W, Keeve E, Hoffmeister B (2014) RapidSplint: virtual splint generation for orthognathic surgery—results of a pilot series. Comput Aided Surg Off J Int Soc Comput Aided Surg 19:20–28. https://doi.org/10.3109/10929088.2014.887778

    Article  Google Scholar 

  23. Kang S-H, Kim M-K, Kim BC, Lee S-H (2014) Orthognathic Y-splint: a CAD/CAM-engineered maxillary repositioning wafer assembly. Br J Oral Maxillofac Surg 52:667–669. https://doi.org/10.1016/j.bjoms.2014.01.023

    Article  PubMed  Google Scholar 

  24. Cousley RRJ, Turner MJA (2014) Digital model planning and computerized fabrication of orthognathic surgery wafers. J Orthod 41:38–45. https://doi.org/10.1179/1465313313Y.0000000075

    Article  PubMed  Google Scholar 

  25. Kang S-H, Kim M-K, You T-K, Lee J-Y (2015) Modification of planned postoperative occlusion in orthognathic surgery, based on computer-aided design/computer-aided manufacturing-engineered preoperative surgical simulation. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 73:134–151. https://doi.org/10.1016/j.joms.2014.07.021

    Article  Google Scholar 

  26. Man Q-W, Jia J, Liu K, Chen G, Liu B (2015) Secondary reconstruction for mandibular osteoradionecrosis defect with fibula osteomyocutaneous flap flowthrough from radial forearm flap using stereolithographic 3-dimensional printing modeling technology. J Craniofac Surg 26:e190–e193. https://doi.org/10.1097/SCS.0000000000001456

    Article  PubMed  Google Scholar 

  27. Schepers RH, Raghoebar GM, Vissink A, Lahoda LU, van der Meer WJ, Roodenburg JL, Reintsema H, Witjes MJ (2013) Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck 35:E109–E114. https://doi.org/10.1002/hed.21922

    Article  PubMed  Google Scholar 

  28. Ye N, Long H, Zhu S, Yang Y, Lai W, Hu J (2015) The accuracy of computer image-guided template for mandibular angle ostectomy. Aesthet Plast Surg 39:117–123. https://doi.org/10.1007/s00266-014-0424-1

    Article  Google Scholar 

  29. Li J, Hsu Y, Luo E, Khadka A, Hu J (2011) Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthet Plast Surg 35:636–640. https://doi.org/10.1007/s00266-010-9602-y

    Article  CAS  Google Scholar 

  30. Dong Z, Li Q, Bai S, Zhang L (2015) Application of 3-dimensional printing technology to Kirschner wire fixation of adolescent condyle fracture. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 73:1970–1976. https://doi.org/10.1016/j.joms.2015.04.005

    Article  Google Scholar 

  31. Sun Y, Luebbers H-T, Agbaje JO, Schepers S, Vrielinck L, Lambrichts I, Politis C (2013) Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery. J Craniofac Surg 24:1871–1876. https://doi.org/10.1097/SCS.0b013e31829a80d9

    Article  PubMed  Google Scholar 

  32. Li B, Zhang L, Sun H, Yuan J, Shen SGF, Wang X (2013) A novel method of computer aided orthognathic surgery using individual CAD/CAM templates: a combination of osteotomy and repositioning guides. Br J Oral Maxillofac Surg 51:e239–e244. https://doi.org/10.1016/j.bjoms.2013.03.007

    Article  PubMed  Google Scholar 

  33. Mazzoni S, Bianchi A, Schiariti G, Badiali G, Marchetti C (2015) Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 73:701–707. https://doi.org/10.1016/j.joms.2014.10.028

    Article  Google Scholar 

  34. He W, Sun Y, Tian K, Xie X, Wang X, Li Z (2015) Novel arch bar fabricated with a computer-aided design and three-dimensional printing: a feasibility study. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 73:2162–2168. https://doi.org/10.1016/j.joms.2015.03.044

    Article  Google Scholar 

  35. Lim CGT, Campbell DI, Clucas DM (2014) Rapid prototyping technology in orbital floor reconstruction: application in three patients. Craniomaxillofacial Trauma Reconstr 7:143–146. https://doi.org/10.1055/s-0034-1371080

    Article  Google Scholar 

  36. Park SW, Choi JW, Koh KS, Oh TS (2015) Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 73:1540–1553. https://doi.org/10.1016/j.joms.2015.03.025

    Article  Google Scholar 

  37. Kozakiewicz M, Szymor P (2013) Comparison of pre-bent titanium mesh versus polyethylene implants in patient specific orbital reconstructions. Head Face Med 9:32. https://doi.org/10.1186/1746-160X-9-32

    Article  PubMed  PubMed Central  Google Scholar 

  38. Engel M, Hoffmann J, Castrillon-Oberndorfer G, Freudlsperger C (2015) The value of three-dimensional printing modelling for surgical correction of orbital hypertelorism. Oral Maxillofac Surg 19:91–95. https://doi.org/10.1007/s10006-014-0466-1

    Article  PubMed  CAS  Google Scholar 

  39. Horn D, Engel M, Bodem JP, Hoffmann J, Freudlsperger C (2012) Reconstruction of a near-total nasal defect using a precontoured titanium mesh with a converse scalping flap. J Craniofac Surg 23:e410–e412. https://doi.org/10.1097/SCS.0b013e31825cef78

    Article  PubMed  Google Scholar 

  40. Ciocca L, Fantini M, De Crescenzio F et al (2011) Computer-aided design and manufacturing construction of a surgical template for craniofacial implant positioning to support a definitive nasal prosthesis. Clin Oral Implants Res 22:850–856. https://doi.org/10.1111/j.1600-0501.2010.02066.x

    Article  PubMed  Google Scholar 

  41. Hatamleh MM, Cartmill M, Watson J (2013) Management of extensive frontal cranioplasty defects. J Craniofac Surg 24:2018–2022. https://doi.org/10.1097/SCS.0b013e3182a41bcc

    Article  PubMed  Google Scholar 

  42. Jirman R, Horák Z, Mazánek J, Reznícek J (2009) Individual replacement of the frontal bone defect: case report. Prague Med Rep 110:79–84

    PubMed  CAS  Google Scholar 

  43. Kim B-J, Hong K-S, Park K-J, Park DH, Chung YG, Kang SH (2012) Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc 52:541–546. https://doi.org/10.3340/jkns.2012.52.6.541

    Article  PubMed  PubMed Central  Google Scholar 

  44. Danelson KA, Gordon ES, David LR, Stitzel JD (2009) Using a three dimensional model of the pediatric skull for pre-operative planning in the treatment of craniosynostosis—biomed 2009. Biomed Sci Instrum 45:358–363

    PubMed  Google Scholar 

  45. Soleman J, Thieringer F, Beinemann J, Kunz C, Guzman R (2015) Computer-assisted virtual planning and surgical template fabrication for frontoorbital advancement. Neurosurg Focus 38:E5. https://doi.org/10.3171/2015.3.FOCUS14852

    Article  PubMed  Google Scholar 

  46. Daniel M, Watson J, Hoskison E, Sama A (2011) Frontal sinus models and onlay templates in osteoplastic flap surgery. J Laryngol Otol 125:82–85. https://doi.org/10.1017/S0022215110001799

    Article  PubMed  CAS  Google Scholar 

  47. Cassetta M, Pandolfi S, Giansanti M (2015) Minimally invasive corticotomy in orthodontics: a new technique using a CAD/CAM surgical template. Int J Oral Maxillofac Surg 44:830–833. https://doi.org/10.1016/j.ijom.2015.02.020

    Article  PubMed  CAS  Google Scholar 

  48. Flügge TV, Nelson K, Schmelzeisen R, Metzger MC (2013) Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71:1340–1346. https://doi.org/10.1016/j.joms.2013.04.010

    Article  Google Scholar 

  49. Steinbacher DM (2015) Three-dimensional analysis and surgical planning in craniomaxillofacial surgery. J Oral Maxillofac Surg. 73(12 Suppl):S40–S56

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhani Ghai.

Ethics declarations

Conflict of interest

Suhani Ghai declares that she has no conflict of interest.

Yogesh Sharma declares that he has no conflict of interest.

Neha Jain declares that she has no conflict of interest.

Mrinal Satpathy declares that he has no conflict of interest.

Ajay Kumar Pillai declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghai, S., Sharma, Y., Jain, N. et al. Use of 3-D printing technologies in craniomaxillofacial surgery: a review. Oral Maxillofac Surg 22, 249–259 (2018). https://doi.org/10.1007/s10006-018-0704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-018-0704-z

Keywords

Navigation