Skip to main content

3D Printing in Pediatric Orthopedics

  • Chapter
  • First Online:
Bone Tissue Engineering

Abstract

The emergence of 3D printing technology is rapidly changing the face of healthcare. Its impact in pediatric orthopedics has been profound. Innovations such as the creation of precise anatomical models for surgical planning and the production of patient-specific instrumentation and implants are just a few of the ways 3D printing is being utilized in pediatric orthopedics. This chapter reviews the processes involved in medical 3D printing, from magnetic resonance imaging and computerized tomography scans to creation of the final models. It will also outline the current applications of 3D printing in pediatric orthopedics. Finally, the chapter will discuss potential future applications of 3D printing in orthopedic bioprinting and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ponseti IV. History of orthopedic surgery. Iowa Orthop J. 1991;11:59–64.

    PubMed Central  Google Scholar 

  2. Whitaker M. The history of 3D printing in healthcare. Bull R Coll Surg Engl. 2014;96(7):228–9.

    Article  Google Scholar 

  3. Skelley NW, Smith MJ, Ma R, Cook JL. Three-dimensional printing technology in orthopaedics. J Am Acad Orthop Surg. 2019;27(24):918–25.

    Article  PubMed  Google Scholar 

  4. Hasan O, Atif M, Jessar MM, Hashmi P. Application of 3D printing in orthopaedic surgery. A new affordable horizon for cost-conscious care. J Pak Med Assoc. 2019;69(1):s46–50.

    PubMed  Google Scholar 

  5. Trauner KB. The emerging role of 3D printing in arthroplasty and orthopedics. J Arthroplast. 2018;33(8):2352–4.

    Article  Google Scholar 

  6. Vaishya R, Patralekh MK, Vaish A, Agarwal AK, Vijay V. Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma. 2018;9(3):194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Malik HH, Darwood ARJ, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res. 2015;199(2):512–22.

    Article  PubMed  Google Scholar 

  8. Martelli N, Serrano C, Van Den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery (United States). 2016;159(6):1485–500.

    Google Scholar 

  9. Tam MD, Laycock SD, Bell D, Chojnowski A. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep. 2012;6(1):31–7.

    PubMed  PubMed Central  Google Scholar 

  10. Esses SJ, Berman P, Bloom AI, Sosna J. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. Am J Roentgenol. 2011;196(6):W683–8.

    Article  Google Scholar 

  11. Mao K, Wang Y, Xiao S, Liu Z, Zhang Y, Zhang X, et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J. 2010;19:797–802.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guarino J, Tennyson S, McCain G, Bond L, Shea K, King H. Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop. 2007;27(8):955–60.

    Article  PubMed  Google Scholar 

  13. Burzyńska K, Morasiewicz P, Filipiak J. The use of 3D printing technology in the ilizarov method treatment: pilot study. Adv Clin Exp Med. 2016;25(6):1157–63.

    Article  PubMed  Google Scholar 

  14. Iobst CA. New technologies in pediatric deformity correction. Orthop Clin North Am. 2019;50(1):77–85.

    Article  PubMed  Google Scholar 

  15. Sternheim A, Gortzak Y, Kolander Y, Dadia S. 3D printing in orthopedic oncology. In: Dipaola M, Wodajo FM, editors. 3D printing in orthopaedic surgery [Internet]. St. Louis: Mica Haley; 2019. p. 179–94. https://www.sciencedirect.com/science/article/pii/B9780323581189000154.

    Chapter  Google Scholar 

  16. Starosolski ZA, Kan JH, Rosenfeld SD, Krishnamurthy R, Annapragada A. Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr Radiol. 2014;44(2):216–21.

    Article  PubMed  Google Scholar 

  17. Windisch G, Salaberger D, Rosmarin W, Kastner J, Exner GU, Haldi-Brändle V, et al. A model for clubfoot based on micro-CT data. J Anat. 2007;210(6):761–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park J, Lakes RS. Biomaterials: an introduction: third edition. 6th ed. New York: Springer-Verlag; 2007. p. 1–16.

    Google Scholar 

  19. Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536–44.

    Article  CAS  PubMed  Google Scholar 

  20. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3(3):249–59.

    Article  PubMed  Google Scholar 

  21. Parthasarathy J, Starly B, Raman S. A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process. 2011;13(2):160–70.

    Article  Google Scholar 

  22. Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57–66.

    PubMed  PubMed Central  Google Scholar 

  23. Birnbaum K, Schkommodau E, Decker N, Prescher A, Klapper U, Radermacher K. Computer-assisted orthopedic surgery with individual templates and comparison to conventional operation method. Spine (Phila Pa 1976). 2001;26(4):365–70.

    Article  CAS  Google Scholar 

  24. Weiss H-R, Tournavitis N, Nan X, Borysov M, Paul L. Workflow of CAD/CAM scoliosis brace adjustment in preparation using 3D printing. Open Med Inform J. 2017;11:44–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Muinck Keizer RJO, Lechner KM, Mulders MAM, Schep NWL, Eygendaal D, Goslings JC. Three-dimensional virtual planning of corrective osteotomies of distal radius malunions: a systematic review and meta-analysis. Strateg Trauma Limb Reconstr. 2017;12(2):77–89.

    Article  Google Scholar 

  26. Zheng P, Yao Q, Xu P, Wang L. Application of computer-aided design and 3D-printed navigation template in locking compression pediatric hip plate TM placement for pediatric hip disease. Int J Comput Assist Radiol Surg. 2017;12(5):865–71.

    Article  PubMed  Google Scholar 

  27. Qiao F, Li D, Jin Z, Gao Y, Zhou T, He J, et al. Application of 3D printed customized external fixator in fracture reduction. Injury. 2015;46(6):1150–5.

    Article  PubMed  Google Scholar 

  28. Glatt V, Samchukov ML, Cherkashin AM, Iobst CA. Reverse dynamization accelerates bone-healing in a large-animal osteotomy model. J Bone Joint Surg Am. 2021;103(3):257–63.

    Article  PubMed  Google Scholar 

  29. Jakus AE, Geisendorfer NR, Lewis PL, Shah RN. 3D-printing porosity: a new approach to creating elevated porosity materials and structures. Acta Biomater. 2018;72:94–109.

    Article  CAS  PubMed  Google Scholar 

  30. Jakus AE, Rutz AL, Shah RN. Advancing the field of 3D biomaterial printing. Biomed Mater. 2016;11(1):014102.

    Article  PubMed  Google Scholar 

  31. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9(4):4636–48.

    Article  CAS  PubMed  Google Scholar 

  32. Jakus AE, Shah RN. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res Part A. 2017;105A(1):274–83.

    Article  Google Scholar 

  33. Frohlich M, Grayson W, Wan L, Marolt D, Drobnic M, Vunjak- NG. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther. 2008;3(4):254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M, et al. Vascularization of natural and synthetic bone scaffolds. Cell Transplant. 2018;27(8):1269–80.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tanaka KS, Lightdale-Miric N. Advances in 3D-printed pediatric prostheses for upper extremity differences. J Bone Joint Surg Am. 2016;98(15):1320–6.

    Article  PubMed  Google Scholar 

  36. Haumont T, Rahman T, Sample W, King MM, Church C, Henley J, et al. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop. 2011;31(5):e44–9.

    Article  PubMed  Google Scholar 

  37. Gretsch KF, Lather HD, Peddada KV, Deeken CR, Wall LB, Goldfarb CA. Development of novel 3D-printed robotic prosthetic for transradial amputees. Prosthetics Orthot Int. 2016;40(3):400–3.

    Article  Google Scholar 

  38. Resnik L, Meucci MR, Lieberman-Klinger S, Fantini C, Kelty DL, Disla R, et al. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch Phys Med Rehabil. 2012;93(4):710–7.

    Article  PubMed  Google Scholar 

  39. Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG. Three-dimensional printing surgical instruments: are we there yet? J Surg Res. 2014;189(2):193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hoekstra H, Rosseels W, Sermon A, Nijs S. Corrective limb osteotomy using patient specific 3D-printed guides: a technical note. Injury. 2016;47(10):2375–80.

    Article  CAS  PubMed  Google Scholar 

  41. Way TW, Chan HP, Goodsitt MM, Sahiner B, Hadjiiski LM, Zhou C, et al. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Phys Med Biol. 2008;53(5):1295–312.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. J Am Acad Orthop Surg. 2019;27(5):e215–26.

    Article  PubMed  Google Scholar 

  43. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4(4):185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27(9):1607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee HJ, Koo YW, Yeo M, Kim SH, Kim GH. Recent cell printing systems for tissue engineering. Int J Bioprinting. 2017;3(1):1–15.

    Article  Google Scholar 

  46. Larsen C, Stapleton E, Sgaglione J, Sgaglione M, Goldstein T, Sgaglione N, et al. Three-dimensional bioprinting in orthopaedics. JBJS Rev. 2020;8(4):e0204.

    Article  PubMed  Google Scholar 

  47. Velardi F, Amante PR, Caniglia M, De Rossi G, Gaglini P, Isacchi G, et al. Osteogenesis induced by autologous bone marrow cells transplant in the pediatric skull. Childs Nerv Syst. 2006;22(9):1158–66.

    Article  PubMed  Google Scholar 

  48. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278–314.

    Article  Google Scholar 

  49. Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY. Nano-structured smart hydrogels with rapid response and high elasticity. Nat Commun. 2013;4:2226.

    Article  PubMed  Google Scholar 

  50. An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1(2):261–8.

    Article  Google Scholar 

  51. McNally MA, Ferguson JY, Lau ACK, Diefenbeck M, Scarborough M, Ramsden AJ, et al. Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: a prospective series of 100 cases. Bone Joint J. 2016;98-B(9):1289–96.

    Article  CAS  PubMed  Google Scholar 

  52. Hashmi MA, Norman P, Saleh M. The management of chronic osteomyelitis using the Lautenbach method. J Bone Joint Surg Ser B. 2004;86-B(2):269–75.

    Article  Google Scholar 

  53. Dong J, Zhang S, Liu H, Liu Y, Du Y, Li X. Novel alternative therapy for spinal tuberculosis during surgery: reconstructing with anti-tuberculosis bioactivity implants. Expert Opin Drug Deliv. 2014;11(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Vermeulen N, Haddow G, Seymour T, Faulkner-Jones A, Shu W. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. J Med Ethics. 2017;43(9):618–24.

    Article  PubMed  Google Scholar 

  55. Bauer H-K, Heller M, Fink M, Maresch D, Gartner J, Gassner UM, et al. Social and legal frame conditions for 3D (and) bioprinting in medicine [Gesellschaftliche und rechtliche rahmenbedingungen für 3-D-druck und bioprinting in der medizin]. Int J Comput Dent. 2016;19(4):293–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Iobst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bafor, A., Parthasarathy, J., Iobst, C.A. (2022). 3D Printing in Pediatric Orthopedics. In: Guastaldi, F.P., Mahadik, B. (eds) Bone Tissue Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-92014-2_7

Download citation

Publish with us

Policies and ethics