Skip to main content
Log in

The search for new powerful energetic transition metal complexes based on 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, employing a new high oxygen balance energetic 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion (DNBTDO) as the bidentate ligand, NH3 and NH2NO2 as short energetic ligands, and Cu/Ni as the metal atoms, two series of novel energetic metal complexes were computationally designed. Their structures and properties were studied by density functional theory, electrostatic potential data, and molecular mechanics methods. The results showed that the designed metal complexes have high detonation performance and acceptable sensitivity: Cu/Ni(DNBTDO)(NH2NO2)2 (A3/B3) have better detonation properties and lower sensitivity than the most powerful CHNO explosive hexanitrohexaazaisowurtzitane, Cu/Ni(DNBTDO)(NH3)(NH2NO2) (A2/B2) have comparable energetic performance and sensitivity with 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, Ni(DNBTDO)(NH3)2 (B1) has comparative energy level and sensitivity with 1,3,5-trinitro-1,3,5-triazinane. These five energetic metal complexes may be attractive to energetic materials researchers. Besides, both the energetic ligands and metal atoms could have a great influence on the structures, heats of formation, detonation properties, and stability of energetic metal complexes, and the effects are coupled with each other. This study may be helpful in the search for and development of new improved energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bushuyev OS, Brown P, Maiti A, Gee RH, Peterson GR, Weeks BL, HopeWeeks LJ (2012) J. Am. Chem. Soc. 134:1422–1425

    Article  CAS  Google Scholar 

  2. Wu BD, Zhang TL, Li YL, Tong WC, Zhou ZN, Zhang JG, Yang L (2013) Z. Anorg. Allg. Chem. 639:2209–2215

    Article  CAS  Google Scholar 

  3. Ilyushin MA, Tselinskiy IV, Smirnov AV, Shugalei IV (2012) Cent Eur J Energetic Mater 9:3–16

    CAS  Google Scholar 

  4. Xu CX, Yin X, Jin X, He P, Qin J, Zhang JG, Jiao JS (2014) J. Coord. Chem. 67:2004–2015

    Article  CAS  Google Scholar 

  5. Tang Z, Zhang JG, Liu ZH, Zhang TL, Yang L, Qiao XJ (2011) J. Mol. Struct. 1004:8–12

    Article  CAS  Google Scholar 

  6. Wu BD, Bi YG, Li FG, Yang L, Zhou ZN, Zhang JG, Zhang TL (2014) Z. Anorg. Allg. Chem. 640:224–228

    Article  CAS  Google Scholar 

  7. Li S, Wang Y, Qi C, Zhao XX, Zhang JC, Zhang SW, Pang SP (2013) Angew. Chem. Int. Ed. 52:14031–14035

    Article  CAS  Google Scholar 

  8. Zhang S, Liu XY, Yang Q, Su ZY, Gao WJ, Wei Q, Xie G, Chen SP, Gao SL (2014) Chem. Eur. J. 20:7906–7910

    Article  CAS  Google Scholar 

  9. Feng YY, Liu XY, Duan LQ, Yang Q, Wei Q, Xie GS, Chen PX, Yang W, Gao SL (2015) Dalton Trans. 44:333–339

    Google Scholar 

  10. Choi CH, Yoo HW, Goh EM, Cho SG, Jung YS (2016) J. Phys. Chem. A 120:4249–4255

    Article  CAS  Google Scholar 

  11. Dippold AA, Klapötke TM (2013) J. Am. Chem. Soc. 135:9931–9938

    Article  CAS  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision A. 01. Gaussian, Inc

  13. Tao JM, Perdew JP, Starroverov VN, Scuseria GE (2003) Phys. Rev. Lett. 91:146401

    Article  Google Scholar 

  14. Rydberg P, Olsen L (2009) J. Phys. Chem. A 113:1949–11953

    Article  Google Scholar 

  15. Rayon VM, Valdes H, Diaz N, Suarez D (2008) J. Chem. Theory Comput. 4:243–256

    Article  CAS  Google Scholar 

  16. Shu Y, Li H, Gao S, Xiong Y (2013) J. Mol. Model. 19:1583–1590

    Article  CAS  Google Scholar 

  17. Sharma P, Singh HJ, Sengupta SK (2016) J. Chem. Sci. 128:1923–1932

    Article  CAS  Google Scholar 

  18. Kamlet MJ, Jacobs S (1968) J. Chem. Phys. 48:23–35

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang JC, Su H, Li SH, Zhang SW, Pang SP (2014) J. Phys. Chem. A 118:4575–4581

    Article  CAS  Google Scholar 

  20. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol. Phys. 107:2095–2101

    Article  CAS  Google Scholar 

  21. Pospíšil M, Vávra P, Koncha MC, Murray JS, Politzer P (2010) J. Mol. Model. 16:895–901

    Article  Google Scholar 

  22. Nielson AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Tetrahedron 54:11793–11812

    Article  Google Scholar 

  23. Zhang MX, Eaton PE, Gilardi R (2000) Angew. Chem. Int. Ed. 39:401–404

    Article  CAS  Google Scholar 

  24. Mondal T, Saritha B, Ghanta S, Roy TK, Mahapatra S, Durga PM (2009) J. Mol. Struct. 897:42–47

    Article  CAS  Google Scholar 

  25. Rice BM, Hare JJ (2002) J. Phys. Chem. A 106:1770–1783

    Article  CAS  Google Scholar 

  26. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propellants, Explos, Pyrotech 22:249–255

    Article  CAS  Google Scholar 

  27. Mayo SL, Olafson BD, Goddard WA (1990) J. Phys. Chem. 94:8897–8909

    Article  CAS  Google Scholar 

  28. Wang GX, Shi CH, Gong XD, Zhu WH, Xiao HM (2009) J. Hazard. Mater. 169:813–818

    Article  CAS  Google Scholar 

  29. Wang F, Du HC, Zhang JY, Gong XD (2011) J. Phys. Chem. A 115:11788–11795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Natural Science Foundation of Nanjing Institute of Technology (YKJ201507, CKJA201603), the National Natural Science Foundation of China (NSFC21603102), Natural Science Foundation of Jiangsu (BK20170761) and Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Kou, B., Zhang, Z. et al. The search for new powerful energetic transition metal complexes based on 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion: a DFT study. J Mol Model 23, 254 (2017). https://doi.org/10.1007/s00894-017-3425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3425-6

Keywords

Navigation