Skip to main content

Advertisement

Log in

Theoretical studies on BTA-Metal (M=Ni, Cu) Complexes as High Energy Materials

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Metal complexes of Nickel and Copper with the dianion of bidentate chelating agent BTA [N,N-bis(1(2)H-tetrazole-5-yl)-amine] along with NH3 and NH2NO2 ligands were designed. A total of four metal complexes having the compositions such as M(BTA)(NH3)(NH2NO2) and M(BTA)(NH2NO2)2 where M is the metal atom, were formulated and subjected to detailed theoretical study to explore their energetic properties. Density Functional Theory (DFT) was used to predict the optimized geometry of the complexes at TPSS / 6-311G(d,p) level. The heats of formation of the metal complexes were determined using atomization method. Crystal densities of the salts were predicted using the data obtained at B3PW91 /6-31G(d,p) level utilizing the wave function analysis (WFA) program. Results indicate that all the designed compounds possess density in the range of 2.18–2.25 g cm−3. This is the remarkable feature of the title compounds because loading density is one of the desired properties for increasing the detonation performance of energetic materials. The calculated impact sensitivities (h50, cm) show that the three of the designed compounds are comfortably insensitive towards impact (h50,cm ∼42) in comparison to the experimentally determined values for the commercially used powerful explosives such as RDX (24–28 cm) and HMX (26–32 cm). Ni(BTA)(NH2NO2)2, the fourth designed compound has a value almost similar to that of RDX and HMX. The calculated detonation parameters D (detonation velocity) and P (detonation pressure) are predicted to be in the range of 7.7–8.5 km s−1 and 29.5–36.1 GPa, respectively. Results obtained in the present study predict that the designed compounds can be used as high energy density materials (HEDs).

Computational studies on Ni and Cu complexes containing BTA and NH2NO2 ligands show that these complexes possess the potential for use as high energy materials. The calculated densities of these metal complexes were estimated to be in the range of 2.18 to 2.25 g cm-3. The calculated detonation parameters put these complexes in the category of HEDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Li F, Bi Y, Zhao W, Zhan T, Zhou Z and Yang L 2015 Inorg. Chem. 54 2050

    Article  CAS  Google Scholar 

  2. P Politzer and J S Murray 2003 (Eds.) Energetic Materials: Part I (Amsterdam: Elsevier)

  3. P Politzer and J S Murray 2003 (Eds.) Energetic Materials: Part II (Amsterdam: Elsevier)

  4. Singh H J and Upadhyaya M K 2013 J. Energetic Mater. 31 301

    Article  CAS  Google Scholar 

  5. Singh H J, Gupta S and Sengupta S K 2015 RSC Adv. 4 40534

    Article  Google Scholar 

  6. Mondal T, Saritha B, Ghanta S, Roy T K, Mahapatra S and Durga Prasad M 2009 J. Mol. Struct. THEOCHEM 897 42

    Article  CAS  Google Scholar 

  7. Dippold A A and Klapötke T M 2013 J. Am. Chem. Soc. 135 9931

    Article  CAS  Google Scholar 

  8. Gao H and Shreeve J M 2011 Chem. Rev. 111 7377

    Article  CAS  Google Scholar 

  9. Ruiz G J C, Holl G, Karaghiosoff K, Klapötke T M, Lohnwitz K, Mayer P, Noth H, Polborn K, Rohbogner C J, Suter M and Weigand J J 2005 Inorg. Chem. 44 4237

    Article  Google Scholar 

  10. Joo Y H, Twamley B, Garg S and Shreeve J M 2008 Angew. Chem. Int. Ed. 44 6236

    Article  Google Scholar 

  11. Gobel M, Karaghiosoff K, Klapötke T M, Piercey D G and Stierstorfer J 2010 J. Am. Chem. Soc. 132 17216

    Article  CAS  Google Scholar 

  12. Liao P Q, Zhou D D, Zhu A X, Jiang L, Lin R B, Zhang J P and Chen X M 2012 J. Am. Chem. Soc. 134 17380

    Article  CAS  Google Scholar 

  13. Su C Y, Goforth A M, Smith M S, Pellechia P J and Loye H C 2004 J. Am. Chem. Soc. 126 3576

    Article  CAS  Google Scholar 

  14. Aromi G, Barrios L A, Roubeau O and Gamez P 2011 Coord. Chem. Rev. 255 485

    Article  CAS  Google Scholar 

  15. Li S, Wang Y, Qi C, Zhao X, Zhang J, Zhang S and Pang S 2013 Angew. Chem. Int. Ed. 52 14031

    Article  CAS  Google Scholar 

  16. Zhang S, Liu X, Yang Q, Su Z, Gao W, Wei Q, Xie G, Chen S and Gao S 2014 Chem.-Eur. J. 20 7906

    Article  CAS  Google Scholar 

  17. Stans M H 1970 NIST Special Publication 1 58

    Google Scholar 

  18. Friedrich M, Ruiz J C G, Klapötke T M, Mayer P, Weber B and Weigand J J 2005 Inorg. Chem. 44 8044

    Article  CAS  Google Scholar 

  19. Guo Y, Gao H, Twamley B and Shreeve J M 2007 Adv. Mater. 19 2884

    Article  CAS  Google Scholar 

  20. Klapötke T M, Mayer P, Stierstorfer J and Weigand J J 2008 J. Mater. Chem. 18 5248

    Article  Google Scholar 

  21. Guo Y, Tao G H, Zeng Z, Gao H, Parrish D A and Shreeve J M 2010 Chem.-Eur. J. 16 3753

    Article  CAS  Google Scholar 

  22. Dong L L, He L, Liu H Y, Tao G H, Nie F D, Huang M and Hu C W 2013 Eur. J. Inorg. Chem. 2013 5009

    Article  CAS  Google Scholar 

  23. Lin J M, Guan Y F, Wang D Y, Dong W, Wang X T and Gao S 2008 J. Chem. Soc., Dalton Trans. 538 6165

    Article  Google Scholar 

  24. Wang Y, Zhang J, Su H, Li S, Zhang S and Pang S 2014 J. Phys. Chem. A 118 4575

    Article  CAS  Google Scholar 

  25. Tao G -H, Twamley B and Shreeve J M 2009 Inorg. Chem. 48 9918

    Article  CAS  Google Scholar 

  26. Tao G -H, Parrish D A and Shreeve J M 2012 Inorg. Chem. 51 5305

    Article  CAS  Google Scholar 

  27. Cook C, Habib F, Aharen T, Clérac R, Hu A and Murugesu M 2013 Inorg. Chem. 52 1825

    Article  CAS  Google Scholar 

  28. Politzer P, Martinez J, Murray J S, Concha M C and Toro-Labbé A 2009 Mol. Phys. 107 2095

    Article  CAS  Google Scholar 

  29. Bulat F A, Toro-Labbé A, Brinck T, Murray J S and Politzer P 2010 J. Mol. Model. 16 1679

    Article  CAS  Google Scholar 

  30. Kamlet M J and Jacobs S 1968 J. Chem. Phys. 48 23

    Article  CAS  Google Scholar 

  31. Tao J, Perdew J P, Starroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146

    Article  Google Scholar 

  32. Rydberg P and Olsen L 2009 J. Phys. Chem. A 113 11949

    Article  CAS  Google Scholar 

  33. Rayon V M, Valdes H, Diaz N and Suarez D 2008 J. Chem. Theory Comput. 4 243

    Article  CAS  Google Scholar 

  34. Frisch M J et al., Gaussian 09 Version A.01 (Wallingford CT: Gaussian Inc.) (2009)

  35. Shu Y, Li H, Gao S and Xiong Y 2013 J. Mol. Model. 19 1583

    Article  CAS  Google Scholar 

  36. Pospíšil M, Vávra P, Koncha M C, Murray J S and Politzer P 2010 J. Mol. Model. 16 895

    Article  Google Scholar 

  37. Dennington R, Keith T and Millam J 2009 GaussView Version 5 (Shawnee Mission KS: Semichem Inc.)

  38. Qiu L, Xio H, Gong X, Ju X and Zhu W 2006 J. Phys. Chem. 110 3797

    Article  CAS  Google Scholar 

  39. Rice B M, Sahu S and Owens F J 2002 J. Mol. Struct. THEOCHEM 583 69

    Article  CAS  Google Scholar 

  40. Cary F A and Sundberg R J 2000 In Advanced Organic Chemistry: Part A: Structure and Mechanisms (New York: Kluwer) p.217

  41. Luo Y-R 2007 In Comprehensive Handbook of Chemical Bond Energies (Boca Raton Florida: CRC Press)

  42. Rice B M and Hare J J 2002 J. Phys. Chem. 106 1770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Uttar Pradesh State Government for providing financial support under its Centre of Excellence Program. Thanks are also due to DRDO, Ministry of Defence for financial help in the up-gradation of the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HARI JI SINGH.

Additional information

Supplementary Information (SI)

All the detailed information regarding the calculation of heat of formation using atomization method (S1), estimation of heat of detonation (S2), electrostatic parameters for the evaluation of impact sensitivity and crystal density (Table S1), atomic coordinates for the minimized structures (Tables S2S5), electronic energy of the molecules (Table S6), and optimized structures of the designed complexes, A1, A2, B1 and B2 (Figure S1) are given in the Supplementary Information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 940 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHARMA, P., SINGH, H.J. & SENGUPTA, S.K. Theoretical studies on BTA-Metal (M=Ni, Cu) Complexes as High Energy Materials. J Chem Sci 128, 1923–1932 (2016). https://doi.org/10.1007/s12039-016-1185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1185-y

Keywords

Navigation