Skip to main content

Advertisement

Log in

A DFT study of the structure–property relationships of bistetrazole-based high-nitrogen energetic metal complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, six series of new energetic metal complexes were designed. Each complex contained a large, high-energy, high-nitrogen, anionic chelating ligand (either the 5,5′-bistetrazolate anion, the 5,5′-azobistetrazolate anion, or the 5,5′-(hydrazine-1,2-diyl)bis-[1H-tetrazol-1-ide] anion—each of which has a different bridging group), Cu or Ni as the metal atom, and two small complexing agent ligands (NH3 and/or NH2NO2). The molecular and electronic structures, heats of formation, densities, detonation properties, and impact sensitivities of the novel complexes were studied using density functional theory. Furthermore, the effects of varying the large chelating ligand (and thus the bridging group), the small complexing agents, and the metal atom on the structure and properties of the complex were investigated and analyzed in depth. The results show that the particular metal, bridging group, and complexing agents included in the energetic complex influence its structure and properties, but the effects of varying the constituents of the complex are complicated or unclear, and these effects are sometimes intertwined. In addition, the detonation pressures, detonation velocities, and impact sensitivities of the novel complexes ranged from 25.9 to 38.6 GPa, from 7.21 to 8.80 km s−1, and from 17 to 48 cm, respectively. Five of the complexes (B3, C3, D3, E3, and F3) appear to possess comparable performance to the famous and widely used high explosive 1,3,5-trinitro-1,3,5-triazinane, making these new complexes attractive to energetic materials experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Q, Zhu WH, Xiao HM (2014) J Mater Chem A 2:13006–13015

  2. Tsyshevsky R, Pagoria P, Zhang M, Racoveanu A, Parrish DA, Smirnov AS, Kuklja MM (2017) J Phys Chem C 121:23853–23864

  3. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) J Mater Chem 22:20418–20422

  4. Yin P, Mitchell LA, Parrish DA, Shreeve JNM (2017) Chem-Asian J 12:378–384

  5. Szimhardt N, Bölter MF, Born M, Klapötke TM, Stierstorfer J (2017) Dalton Trans 46:5033–5040

  6. Yin Q, Klare HF, Oestreich M (2016) Angew Chem Int Ed 55:3204–3207

  7. Yin X, Jin X, Xu CX, He P, Wang K, Zhang JG (2016) Cent Eur J Energ Mater 13:301–320

  8. Xu JG, Wang SH, Zhang MJ, Sun C, Xiao Y, Li R (2017) ACS Omega 2:346–352

  9. Cohen A, Yang Y, Yan QL, Shlomovich A, Petrutik N (2016) Chem Mater 28:6118–6126

  10. Xu Y, Wang Q, Shen C, Lin C, Wang P, Lu M (2017) Nature 549:78–81

  11. Wu Q, Kou B, Zhang Z, Hang Z, Zhu W (2017) J Mol Model 23:254

  12. Gao H, Huang Y, Twamley B, Ye C, Shreeve JM (2008) ChemSusChem 1:222–227

  13. Guo Y, Tao GH, Zeng Z, Gao H, Parrish DA, Shreeve JM (2010) Chem Eur J 16:3753–3762

  14. Guo Y, Gao H, Twamley B, Shreeve JM (2007) Adv Mater 19:2884–2888

  15. Klapötke TM, Sabaté CM (2007) Z Anorg Allg Chem 633:2671–2677

  16. Tao GH, Twamley B, Shreeve JM (2009) Inorg Chem 48:9918–9923

  17. Ebespächer M, Klapötke TM, Sabaté CM (2009) New J Chem 33:517–527

  18. Karaghiosoff K, Klapötke TM Sabaté CM (2009) Eur J Inorg Chem 238–250

  19. Shu Y, Li H, Gao S, Xiong Y (2013) J Mol Model 19:1583–1590

  20. Tao JM, Perdew JP, Starroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

  21. Rydberg P, Olsen L (2009) J Phys Chem A 113:1949–1953

  22. Rayon VM, Valdes H, Diaz N, Suarez D (2008) J Chem Theory Comput 4:243–256

  23. Sharma P, Singh HJ, Sengupta SK (2016) J Chem Sci 128:1923–1932

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A 01. Gaussian, Inc., Wallingford

  25. Kamlet MJ, Jacobs S (1968) J Chem Phys 48:23–35

  26. Wang Y, Zhang JC, Su H, Li SH, Zhang SW, Pang SP (2014) J Phys Chem A 118:4575–4581

  27. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

  28. Pospíšil M, Vávra P, Koncha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

  29. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498

  30. Astakhov AM, Stepanov RS, Babushkin AY (1998) Combust Explo Shock+ 34: 85

  31. Wu Q, Zhu WH, Xiao HM (2014) RSC Adv 4:3789–3797

  32. Trzciński WA, Cudziło S, Chyłek Z, Szymańczyk L (2008) J Hazard Mater 157:605–612

  33. Politzer P, Murray JS (2014) J Mol Model 20:2223–2230

  34. Politzer P, Murray JS (2015) J Mol Model 21:262

  35. Politzer P, Murray JS (2015) J Mol Model 21:25

  36. Politzer P, Murray JS (2016) Propellants Explos Pyrotech 41:414–425

  37. Pan Y, Zhu WH (2017) J Phys Chem A 121:9163–9171

  38. Rice BM, Hare JJ (2002) Phys J Chem A 106:1770–1783

Download references

Acknowledgments

The present work was supported by the Natural Science Foundation of Nanjing Institute of Technology (CKJA201603, ZKJ201501), the Natural Science Foundation of Jiangsu (BK20170761, BK20160773), the National Natural Science Foundation of China (NSFC21603102), the Jiangsu Key Laboratory Opening Project of Advanced Structural Materials and Application Technology (ASMA201707), and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Funding

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhang, Z., Kou, B. et al. A DFT study of the structure–property relationships of bistetrazole-based high-nitrogen energetic metal complexes. J Mol Model 24, 119 (2018). https://doi.org/10.1007/s00894-018-3658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3658-z

Keywords

Navigation