Skip to main content
Log in

The average local ionization energy as a tool for identifying reactive sites on defect-containing model graphene systems

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In a continuing effort to further explore the use of the average local ionization energy \( \overline{\mathrm{I}}\left( \mathbf{r} \right) \) as a computational tool, we have investigated how well \( \overline{\mathrm{I}}\left( \mathbf{r} \right) \) computed on molecular surfaces serves as a predictive tool for identifying the sites of the more reactive electrons in several nonplanar defect-containing model graphene systems, each containing one or more pentagons. They include corannulene (C20H10), two inverse Stone-Thrower-Wales defect-containing structures C26H12 and C42H16, and a nanotube cap model C22H6, whose end is formed by three fused pentagons. Coronene (C24H12) has been included as a reference planar defect-free graphene model. We have optimized the structures of these systems as well as several monohydrogenated derivatives at the B3PW91/6-31G* level, and have computed their \( \overline{\mathrm{I}}\left( \mathbf{r} \right) \) on molecular surfaces corresponding to the 0.001 au, 0.003 au and 0.005 au contours of the electronic density. We find that (1) the convex sides of the interior carbons of the nonplanar models are more reactive than the concave sides, and (2) the magnitudes of the lowest \( \overline{\mathrm{I}}\left( \mathbf{r} \right) \) surface minima (the \( {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} \)) correlate well with the interaction energies for hydrogenation at these sites. These \( {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} \) values decrease in magnitude as the nonplanarity of the site increases, consistent with earlier studies. A practical benefit of the use of \( \overline{\mathrm{I}}\left( \mathbf{r} \right) \) is that a single calculation suffices to characterize the numerous sites on a large molecular system, such as graphene and defect-containing graphene models.

Convex 0.001 au molecular surface of hydrogenated inverse Stone-Thrower-Wales defect-containing model 4H, with the hydrogen attached to one of the central carbons fusing the two pentagons

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  2. Koopmans TA (1934) Physica 1:104–113

    Article  Google Scholar 

  3. Nesbet RK (1965) Adv Chem Phys 9:321–363

    Article  Google Scholar 

  4. Politzer P, Abu-Awwad F, Murray JS (1998) Int J Quantum Chem 69:607–613

    Article  CAS  Google Scholar 

  5. Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Int J Quantum Chem Quantum Chem Symp 24:645

    Article  CAS  Google Scholar 

  6. Brinck T, Murray JS, Politzer P, Carter RE (1991) J Org Chem 56:2934–2936

    Article  CAS  Google Scholar 

  7. Murray JS, Brinck T, Politzer P (1991) Int J Quantum Chem Quantum Biol Symp 40(S18):91–98

    Article  Google Scholar 

  8. Brinck T, Murray JS, Politzer P (1991) J Org Chem 56:5012–5015

    Article  CAS  Google Scholar 

  9. Murray JS, Brinck T, Politzer P (1992) J Mol Struct (THEOCHEM) 225:271–281

    Article  Google Scholar 

  10. Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) J Chem Phys 95:6699–6704

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Grice ME (2005) Coll Czech Chem Comm 70:550–558

    Article  CAS  Google Scholar 

  12. Politzer P, Shields ZP-I, Bulat FA, Murray JS (2011) J Chem Theory Comput 7:377–384

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2007) In: Toro-Labbé A (ed) Chemical reactivity, vol 8. Elsevier, Amsterdam, 119–137

    Google Scholar 

  14. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  15. Brinck T, Murray JS, Politzer P (1993) Int J Quantum Chem 48:73–88

    Article  CAS  Google Scholar 

  16. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  17. Politzer P, Murray JS (2012) Theor Chem Accounts 121:1114, 1–10

    Article  Google Scholar 

  18. Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct (THEOCHEM) 501–502:241–250

    Article  Google Scholar 

  19. Peralta-Inga Z, Murray JS, Grice ME, Boyd S, O’Connor CJ, Politzer P (2001) J Mol Struct (THEOCHEM) 549:147–158

    Article  CAS  Google Scholar 

  20. Bulat FA, Burgess JS, Matis BR, Baldwin JW, Macaveiu L, Murray JS, Politzer P (2012) J Phys Chem A 116:8644–8652. doi:10.1021/jp3053604

    Google Scholar 

  21. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351–1357

    Article  CAS  Google Scholar 

  22. Saha S, Dinadayalane TC, Leszczynska D, Murray JS, Leszczynski J (2012) J Phys Chem C 116:22399–22410. doi: 10.1021/jp307090t

    Google Scholar 

  23. Barth WE, Lawton RG (1966) J Am Chem Soc 88:380–381

    Article  CAS  Google Scholar 

  24. Hedberg L, Hedberg K, Cheng P-C, Scott LT (2000) J Phys Chem A 104:7689–7694

    Article  CAS  Google Scholar 

  25. Slayden SW, Liebman JF (2001) Chem Rev 101:1541–1566

    Article  CAS  Google Scholar 

  26. Scott LT, Bronstein HE, Preda DV, Ansems RBM, Bratchen MS, Hagen S (1999) Pure Appl Chem 71:209–219

    Article  CAS  Google Scholar 

  27. Lusk MT, Carr DC (2008) Phys Rev Lett 100:175503, 1–4

    Article  Google Scholar 

  28. Lusk MT, Carr DC (2009) Carbon 47:2226–2232

    Article  CAS  Google Scholar 

  29. Lusk MT, Wu DT, Carr DC (2010) Phys Rev B 81:15544, 1–9

    Article  Google Scholar 

  30. Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1156–1169

    Article  Google Scholar 

  31. Politzer P, Lane P, Concha MC, Murray JS (2005) Microelectron Eng 81:485–493

    Article  CAS  Google Scholar 

  32. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Salalutdniov MK, Baldwin JW, Cuthbertson JC, Shhehan PE et al (2010) Nano Lett 10:3001–3005

    Article  CAS  Google Scholar 

  33. Teillet-Billy D, Rougeau N, Ivanovskaya VV, Sidis V (2010) Int J Quantum Chem 110:2231–2236

    Article  CAS  Google Scholar 

  34. Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, Chigo Anota E (2011) J Mol Model 17:1133–1139

    Article  Google Scholar 

  35. Wang Y, Qian H-J, Morokuma K, Irle S (2012) J Phys Chem A 116:7154–7160

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, Revision A.1. Gaussian, Wallingford

    Google Scholar 

  37. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  38. Bader RWF, Carrol MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  39. Baskin Y, Meyer L (1955) Phys Rev 100:544

    Article  CAS  Google Scholar 

  40. Allen FH, Kennard O, Watson DG, Brammer L, Guy Orpen A, Taylor R (1987) J Chem Soc Perk Trans II:S1-S19

  41. Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86–91

    Article  CAS  Google Scholar 

  42. Boukhvalov DW, Katsnelson MI (2008) Nano Lett 8:4373–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the continued support and guidance that we receive from Peter Politzer, to whom this paper is dedicated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J.S., Shields, Z.PI., Lane, P. et al. The average local ionization energy as a tool for identifying reactive sites on defect-containing model graphene systems. J Mol Model 19, 2825–2833 (2013). https://doi.org/10.1007/s00894-012-1693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1693-8

Keywords

Navigation