Skip to main content
Log in

First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electrical and chemical properties of graphene (C24H12), graphane (C24H24) and graphene oxide (C54H17+O+(OH)3+COOH) were studied through the density functional theory (DFT) at level of Local Density Approximation (LDA) using a model CnHm like. The optimized geometry, energy gap and chemical reactivity for the proposed carbon 2D models are reported. It was found that while the graphene and graphane structures have semiconductor behavior, the graphene oxide behaves as semi-metal. However, a transition from semi-mental to semiconductor is predicted if the carboxyl group (COOH) is removed from such structure. The chemically active sites are analyzed on the basis of the electrophilic Fukui functions for each structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451–10453

    Article  CAS  Google Scholar 

  3. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  4. Serrano J, Bosak A, Arenal R, Krisch M, Watanabe K, Taniguchi T, Kanda H, Rubio A, Wirtz L (2007) Phys Rev Lett 98:095503–095504

    Article  CAS  Google Scholar 

  5. Bolotin KI, Sikes KJ, Hone J, Strormer HL, Kim P (2008) Phys Rev Lett 101:096802–096804

    Article  CAS  Google Scholar 

  6. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  7. Leenaerts O, Partoens B, Peeters FM. arXiv:0810.4056v1 [cond-mat.mtrl-sci]

  8. Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401–153404

    Article  Google Scholar 

  9. Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Phys Rev B 77:035427

    Article  Google Scholar 

  10. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2006) Science 323:610–613

    Article  Google Scholar 

  11. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457–460

    Article  CAS  Google Scholar 

  12. Chigo-Anota E (2009) Sup y Vac 22:19–23

    Google Scholar 

  13. Chigo-Anota E, Salazar-Villanueva M, Hernández-Cocoletzi H. Phys Stat Solidi C in press. doi:10.1002/pssc.200983909

  14. Chigo-Anota E, Salazar-Villanueva M, Hernández-Cocoletzi H. J Nanosci Nanotechnol in press. doi:10.1166/jnn.2011.3441

  15. Chigo-Anota E, Salazar-Villanueva M, Hernández-Cocoletzi H (2010) Phys Stat Solidi C 7:2252–2254

    Article  Google Scholar 

  16. Chigo-Anota E, Salazar-Villanueva M (2009) Sup y Vac 22:23–28

    Google Scholar 

  17. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  18. Kohn W, Becke AD, Parr RG (2006) J Phys Chem 100:12974–12980

    Article  Google Scholar 

  19. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  20. Kohn W (1999) Rev Mod Phys 71:1253–1266

    Article  CAS  Google Scholar 

  21. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  22. Delley B (1996) J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  23. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  24. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, USA, p 300

    Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  27. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  28. Frisch MJ et al. (2004) GAUSSIAN03, revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  29. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Mc Millan, USA, p 480

    Google Scholar 

  30. http://www.csc.fi/english/pages/g0penMol. Consulted online June 2010

  31. Martínez JI, Cabria I, López MJ, Alonso JA (2009) J Phys Chem C 113:939–941

    Article  Google Scholar 

  32. You YM, Ni Zh H, Yu T, Shen ZX (2008) Appl Phys Lett 93:163112–163113

    Article  Google Scholar 

  33. Lebegue S, Klintenberg M, Eriksson O, Katsnelson MI. arXiv:0903.0310v1 [cond-mat.mtrl-sci]

  34. Gómez-Navarro C, Thomas Weitz R, Bittner AM, Scolari M, Burghard M, Kern K (2007) Nano Lett 7:3499–3503

    Article  Google Scholar 

  35. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano Res 1:203–212

    Article  CAS  Google Scholar 

  36. Lahaye RJWE, Jeong HK, Park CY, Lee YH (2009) Phys Rev B 79:125435–125438

    Article  Google Scholar 

  37. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  38. Gázquez JL, Méndez F (1994) J Phys Chem 98:4591–4593

    Article  Google Scholar 

  39. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  40. Méndez F, Gázquez JL (1994) J Am Chem Soc 116:9298–9301

    Article  Google Scholar 

  41. López P, Méndez F (2004) Org Lett 6:1781–1783

    Article  Google Scholar 

  42. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, USA, p 342

    Google Scholar 

  43. Lee Ch, Yang W, Parr RG (1988) J Mol Struct THEOCHEM 163:305–313

    Article  Google Scholar 

  44. Gilardoni F, Weber J, Chermette H, Ward TR (1998) J Phys Chem A 102:3607–3613

    Article  CAS  Google Scholar 

  45. Politzer P, Murray JS, Burat FA (2010) J Mol Model in press. doi: 10.1007/s00894-010-0709-5

  46. Peralta-Inga Z, Murray JS, Grice ME, Boyd S, O’Connor CJ, Politzer P (2001) J Mol Struct THEOCHEM 549:147–158

    Article  CAS  Google Scholar 

  47. Sahin H, Ataca C, Ciraci S (2009) Appl Phys Lett 95:222510–222513

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Vicerrectoria de Investigación y Estudios de Posgrado-Benemérita Universidad Autónoma de Puebla (CHAE-ING10-I), Facultad de Ingeniería Química-Benemérita Universidad Autónoma de Puebla (2009-2010), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177) and Consejo Nacional de Ciencia y Tecnología, Mexico (Grant No. 0083982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Chigo Anota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández Rosas, J.J., Ramírez Gutiérrez, R.E., Escobedo-Morales, A. et al. First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J Mol Model 17, 1133–1139 (2011). https://doi.org/10.1007/s00894-010-0818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0818-1

Keywords

Navigation