Skip to main content
Log in

Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A new xylanase gene (xynA) from the marine microorganism Zunongwangia profunda was identified to encode 374 amino acid residues. Its product (XynA) showed the highest identity (42.78 %) with a xylanase from Bacillus sp. SN5 among the characterized xylanases. XynA exhibited the highest activity at pH 6.5 and 30 °C, retaining 23 and 38 % of the optimal activity at 0 and 5 °C, respectively. XynA was not only cold active, but also halophilic, and both its activity and thermostability could be significantly increased by NaCl, showing the highest activity (180 % of the activity) at 3 M NaCl and retaining nearly 100 % activity at 5 M NaCl, compared to the absence of NaCl. In the presence of 3 M NaCl, the k cat/K m value of XynA exhibited a 3.41-fold increase for beechwood xylan compared to no added NaCl, and the residual activity of XynA increased from 23 % (no added NaCl) to 58 % after 1 h incubation at 45 °C. This may be the first report concerning a cold-adapted xylanase from a non-halophilic species that displays the highest activity at a NaCl concentration range from 3 to 5 M. The features of cold activity and salt tolerance suggest the potential application of XynA in the food industry and bioethanol production from marine seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84:19–35

    Article  CAS  PubMed  Google Scholar 

  • Bai W, Xue Y, Zhou C, Ma Y (2012) Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol Lett 34:2093–2099

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43:141–194

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46:22–31

    CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (1997) Review Psychrophilic enzymes: molecular basis of cold adaptation. CMLS Cell Mol Life Sci 53:830–841

    Article  CAS  Google Scholar 

  • Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357

    Article  CAS  PubMed  Google Scholar 

  • Fukumura M, Sakka K, Shimada K, Ohmiya K (1995) Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci Biotech Bioch 59:40–46

    Article  CAS  Google Scholar 

  • Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695

    PubMed  Google Scholar 

  • Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, Tang SJ (2011a) Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol Lett 33:1441–1447

    Article  CAS  PubMed  Google Scholar 

  • Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011b) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46:1257–1263

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Khandeparker R, Verma P, Deobagkar D (2011) A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. New Biotechnol 28:814–821

    Article  CAS  Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW (2006a) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10:295–300

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, Wong DW (2006b) Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr Microbiol 52:112–116

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhao X, Bai F (2012) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97:4361–4368

    Article  PubMed  Google Scholar 

  • Menon G, Mody K, Keshri J, Jha B (2010) Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol Bioproc Eng 15:998–1005

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nystuen A (2000) Lasergene 99. Biotech Softw Internet Rep: Computer Softw J Sci 1:192–197

    Article  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  CAS  PubMed  Google Scholar 

  • Qin QL, Zhao DL, Wang J, Chen XL, Dang HY, Li TG, Zhang YZ, Gao PJ (2007) Wangia profunda gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from southern Okinawa Trough deep-sea sediment. FEMS Microbiol Lett 271:53–58

    Article  CAS  PubMed  Google Scholar 

  • Qin QL, Zhang XY, Wang XM, Liu GM, Chen XL, Xie BB, Dang HY, Zhou BC, Yu J, Zhang YZ (2010) The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genom 11:247

    Article  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  CAS  PubMed  Google Scholar 

  • Setati ME (2010) Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. Afr J Biotechnol 9:1555–1560

    CAS  Google Scholar 

  • Sheridan PP, Panasik N, Coombs JM, Brenchley JE (2000) Approaches for deciphering the structural basis of low temperature enzyme activity. BBA Protein Struct Mol 1543:417–433

    Article  CAS  Google Scholar 

  • Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 7:63–70

    CAS  PubMed  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  Google Scholar 

  • Wang G, Luo H, Wang Y, Huang H, Shi P, Yang P, Meng K, Bai Y, Yao B (2011) A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour Technol 102:3330–3336

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Hu W, Lin XY, Wu ZH, Li YZ (2012) A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 93:1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Ward OP, Moo-Young M, Venkat K (1989) Enzymatic degradation of cell wall and related plant polysaccharides. Crit Rev Biotechnol 8:237–274

    Article  CAS  PubMed  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Hu SN, Chen JJ, Lin LB, Wei YL, Tang SK, Xu LH, Li WJ (2012) Purification and partial characterisation of a thermostable xylanase from salt-tolerant Thermobifida halotolerans YIM 90462 T. Process Biochem 47:225–228

    Article  CAS  Google Scholar 

  • Zhou J, Gao Y, Dong Y, Tang X, Li J, Xu B, Mu Y, Wu Q, Huang Z (2012) A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J Ind Microbiol Biotechnol 39:965–975

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No.J1103510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziduo Liu.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplementary material 2 (TIFF 4899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Huang, Z., Zhang, X. et al. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda . Extremophiles 18, 441–450 (2014). https://doi.org/10.1007/s00792-014-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0629-x

Keywords

Navigation