Skip to main content
Log in

Biosynthesis of Silver Chloride Nanoparticles (AgCl-NPs) from Extreme Halophiles and Evaluation of Their Biological Applications

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes. In this study, pigmented halophilic microorganisms (n = 77) were screened to synthesize silver chloride nanoparticles (AgCl-NPs) with silver nitrate as metal precursors, and their biological applications were assessed. The synthesis of AgCl-NPs was possible using the crude extract from cellular lysis (CECL) of six extreme halophiles. Two of the AgCl-NPs viz. AK2-NPs and MY6-NPs synthesized by the CECL of Haloferax alexandrinus RK_AK2 and Haloferax lucentense RK_MY6, respectively, exhibited antimicrobial, antioxidative, and anti-inflammatory activities. The surface plasmon resonance of the AgCl-NPs was determined with UV spectroscopy. XRD analysis of AK2-NPs and MY6-NPs confirmed the presence of silver in the form of chlorargyrite (silver chloride) having a cubic structure. The crystallite size of AK2-NPs and MY6-NPs, estimated with the Scherrer formula, was 115.81 nm and 137.50 nm. FTIR analysis verified the presence of diverse functional groups. Dynamic light-scattering analysis confirmed that the average size distribution of NPs was 71.02 nm and 117.36 nm for AK2-NPs and MY6-NPs, respectively, with monodisperse nature. The functional group in 1623–1641 cm−1 indicated the presence of protein β-sheet structure and shifting of amino and hydroxyl groups from the pigmented CECL, which helps in capping and stabilizing nanoparticles. The study provides evidence that CECL of Haloferax species can rapidly synthesize NPs with unique characteristics and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The corresponding author will maintain the existing information supplied for the article.

References

  1. Lach J, Jęcz P, Strapagiel D et al (2021) The methods of digging for “gold” within the salt: characterization of halophilic prokaryotes and identification of their valuable biological products using sequencing and genome mining tools. Genes (Basel). https://doi.org/10.3390/genes12111756

    Article  PubMed Central  Google Scholar 

  2. Giani M, Garbayo I, Vílchez C, Martínez-Espinosa RM (2019) Haloarchaeal carotenoids: healthy novel compounds from extreme environments. Mar Drugs 17:524. https://doi.org/10.3390/md17090524

    Article  CAS  PubMed Central  Google Scholar 

  3. Bonete MJ, Martínez-Espinosa RM (2011) Enzymes from halophilic archaea: open questions. Halophiles and hypersaline environments. Springer, Berlin, pp 359–371

    Chapter  Google Scholar 

  4. Haque RU, Paradisi F, Allers T (2020) Haloferax volcanii for biotechnology applications: challenges, current state, and perspectives. Appl Microbiol Biotechnol 104:1371–1382. https://doi.org/10.1007/s00253-019-10314-2

    Article  CAS  PubMed  Google Scholar 

  5. Sreevalsan A, Moopantakath J, Kumavath R (2021) Extremophilic microbes. Microbiomes of extreme environments. CRC Press, Boca Raton, pp 218–229

    Chapter  Google Scholar 

  6. Srivastava P, Bragança J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831. https://doi.org/10.1007/s00792-013-0563-3

    Article  CAS  PubMed  Google Scholar 

  7. Tag HM, Saddiq AA, Alkinani M, Hagagy N (2021) Biosynthesis of silver nanoparticles using Haloferax sp. NRS1: image analysis, characterization, in vitro thrombolysis, and cytotoxicity. AMB Express 11:75. https://doi.org/10.1186/s13568-021-01235-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moopantakath J, Imchen M, Kumavath R, Martínez-Espinosa RM (2021) Ubiquitousness of haloferax and carotenoid producing genes in Arabian Sea Coastal biosystems of India. Mar Drugs 19:442. https://doi.org/10.3390/md19080442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imchen M, Vennapu RK, Ghosh P, Kumavath R (2019) Insights into antagonistic interactions of multidrug resistant bacteria in Mangrove sediments from the south Indian state of Kerala. Microorganisms 7:678. https://doi.org/10.3390/microorganisms7120678

    Article  CAS  PubMed Central  Google Scholar 

  10. Alam K, Farraj DAA, Mah-e-Fatima S et al (2020) Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. J Infect Public Health 13:1734–1741. https://doi.org/10.1016/J.JIPH.2020.07.007

    Article  PubMed  Google Scholar 

  11. Tatta ER, Kumavath R (2020) Rhodethrin and Rubrivivaxin as potential source of anti-biofilm agents against vancomycin resistant Enterococcus faecalis (ATCC 19443). Microb Pathog 148:104457. https://doi.org/10.1016/J.MICPATH.2020.104457

    Article  CAS  PubMed  Google Scholar 

  12. AAT Bioquest, Inc (2022, January 26) Quest Graph™ IC50 Calculator. AAT Bioquest. https://www.aatbio.com/tools/ic50-calculator

  13. Lovecká P, Svobodová A, Macůrková A et al (2020) Decorative magnolia plants: a comparison of the content of their biologically active components showing antimicrobial effects. Plants 9:1–9. https://doi.org/10.3390/plants9070879

    Article  CAS  Google Scholar 

  14. de Torre MP, Cavero RY, Calvo MI, Vizmanos JLW (2019) A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants 8:1–11. https://doi.org/10.3390/antiox8050142

    Article  CAS  Google Scholar 

  15. Bailey-shaw YA, Williams LAD, Green CE et al (2017) In-vitro evaluation of the anti-inflammatory potential of selected Jamaican plant extracts using the Bovine Serum albumin protein denaturation assay. Int J Pharm Sci Rev Res 47:145–153

    CAS  Google Scholar 

  16. Buda DM, Bulzu PA, Barbu-Tudoran L et al (2019) Physiological response to silver toxicity in the extremely halophilic archaeon Halomicrobium mukohataei. FEMS Microbiol Lett 366:1–8. https://doi.org/10.1093/femsle/fnz231

    Article  CAS  Google Scholar 

  17. Hammer Ø, Harper D, electronica PR-P, 2001 undefined (2001) PAST: paleontological statistics software package for education and data analysis. paleo.carleton.ca 4:178

  18. Abd Alamer IS, Tomah AA, Ahmed T, Li B, Zhang J (2021) Biosynthesis of silver chloride nanoparticles by Rhizospheric bacteria and their Antibacterial Activity against phytopathogenic bacterium Ralstonia solanacearum. Molecules 27:224. https://doi.org/10.3390/molecules27010224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhatnagar S, Kobori T, Ganesh D et al (2019) Biosynthesis of silver nanoparticles mediated by extracellular pigment from talaromyces purpurogenus and their biomedical applications. Nanomaterials. https://doi.org/10.3390/nano9071042

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:1–11. https://doi.org/10.1186/s41938-018-0028-1

    Article  Google Scholar 

  21. Osorio-Echavarría J, Osorio-Echavarría J, Ossa-Orozco CP, Gómez-Vanegas NA (2021) Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: influence of silver nitrate concentration and fungus growth time. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-82514-8

    Article  CAS  Google Scholar 

  22. Imchen M, Moopantakath J, Kumavath R et al (2020) Current trends in experimental and computational approaches to combat antimicrobial resistance. Front Genet 11:1144. https://doi.org/10.3389/fgene.2020.563975

    Article  CAS  Google Scholar 

  23. Patil S, Fernandes J, Tangasali R, Furtado I (2014) Exploitation of haloferax alexandrinus for biogenic synthesis of silver nanoparticles antagonistic to human and lower mammalian pathogens. J Clust Sci 25:423–433. https://doi.org/10.1007/s10876-013-0621-0

    Article  CAS  Google Scholar 

  24. Abdollahnia M, Makhdoumi A, Mashreghi M, Eshghi H (2020) Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: the case of silver and selenium. PLoS ONE 15:e0229886. https://doi.org/10.1371/JOURNAL.PONE.0229886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adiguzel AO, Adiguzel SK, Mazmanci B et al (2018) Silver nanoparticle biosynthesis from newly isolated streptomyces genus from soil. Mater Res Express 5:045402. https://doi.org/10.1088/2053-1591/aab861

    Article  CAS  Google Scholar 

  26. Sivasankar P, Seedevi P, Poongodi S et al (2018) Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr Polym 181:752–759. https://doi.org/10.1016/J.CARBPOL.2017.11.082

    Article  CAS  PubMed  Google Scholar 

  27. Das P, Ghosal K, Jana NK et al (2019) Green synthesis and characterization of silver nanoparticles using belladonna mother tincture and its efficacy as a potential antibacterial and anti-inflammatory agent. Mater Chem Phys 228:310–317. https://doi.org/10.1016/J.MATCHEMPHYS.2019.02.064

    Article  CAS  Google Scholar 

  28. Kedi PBE, Meva FE, Kotsedi L et al (2018) Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine 13:8537–8548. https://doi.org/10.2147/IJN.S174530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zewde B, Ambaye A, Stubbs J (2016) A review of stabilized silver nanoparticles: synthesis, biological properties, characterization, and potential areas of applications. Nanomedicine 4(1043):1–14

    Google Scholar 

  30. Maheshwaran G, Malai Selvi M, Selva Muneeswari R et al (2021) Green synthesis of lanthanum oxide nanoparticles using Moringa oleifera leaves extract and its biological activities. Adv Powder Technol 32:1963–1971. https://doi.org/10.1016/J.APT.2021.04.004

    Article  CAS  Google Scholar 

  31. Ramamurthy CH, Padma M et al (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Coll Surf B Biointerfaces 102:808–815. https://doi.org/10.1016/J.COLSURFB.2012.09.025

    Article  CAS  Google Scholar 

  32. Rodríguez-León E, Iñiguez-Palomares R, Navarro RE et al (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8:318. https://doi.org/10.1186/1556-276X-8-318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigo-Baños M, Garbayo I, Vílchez C et al (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532. https://doi.org/10.3390/md13095508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu D, Yam VWW (2005) Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J Phys Chem B 109:5497–5503. https://doi.org/10.1021/jp0448346

    Article  CAS  PubMed  Google Scholar 

  35. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Martínez-Espinosa R (2001) Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterization. FEMS Microbiol Lett 204:381–385. https://doi.org/10.1016/S0378-1097(01)00431-1

    Article  PubMed  Google Scholar 

  37. Kilic V, Kilic GA, Kutlu HM, Martínez-Espinosa RM (2017) Nitrate reduction in Haloferax alexandrinus: the case of assimilatory nitrate reductase. Extremophiles 21:551–561. https://doi.org/10.1007/s00792-017-0924-4

    Article  CAS  PubMed  Google Scholar 

  38. Miralles-Robledillo JM, Torregrosa-Crespo J, Martínez-Espinosa RM, Pire C (2019) DMSO reductase family: phylogenetics and applications of extremophiles. Int J Mol Sci 20:3349. https://doi.org/10.3390/ijms20133349

    Article  CAS  PubMed Central  Google Scholar 

  39. Martínez-Espinosa RM (2020) Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments. Int J Mol Sci 21:4228. https://doi.org/10.3390/ijms21124228

    Article  CAS  PubMed Central  Google Scholar 

  40. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S (1997) Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun 239:85–90. https://doi.org/10.1006/bbrc.1997.7433

    Article  CAS  PubMed  Google Scholar 

  41. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Coll Surf A Physicochem Eng Asp 368:58–63. https://doi.org/10.1016/j.colsurfa.2010.07.024

    Article  CAS  Google Scholar 

  42. Vitolina S, Shulga G, Neiberte B, Jaunslavietis J, Verovkins A, Betkers T (2022) Characteristics of the waste wood biomass and its effect on the properties of wood sanding dust/recycled pp composite. Polymers (Basel) 14:468. https://doi.org/10.3390/polym14030468

    Article  CAS  Google Scholar 

  43. Singh H, Du J, Singh P, Yi TH (2018) Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. J Pharm Anal 8:258–264. https://doi.org/10.1016/J.JPHA.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delfino I, Portaccio M, Della VB et al (2013) Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy. Mater Sci Eng C 33:304–310. https://doi.org/10.1016/j.msec.2012.08.044

    Article  CAS  Google Scholar 

  45. Kota S, Dumpala P, Anantha RK et al (2017) Evaluation of therapeutic potential of the silver/silver chloride nanoparticles synthesized with the aqueous leaf extract of Rumex acetosa. Sci Rep 7:11566. https://doi.org/10.1038/s41598-017-11853-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou X, Zhao Q, Liu G, Cai W (2019) 4-Mercaptophenylboronic acid modified Au nanosheets-built hollow sub-microcubes for active capture and ultrasensitive SERS-based detection of hexachlorocyclohexane pesticides. Sens Actuators B Chem 293:63–70. https://doi.org/10.1016/J.SNB.2019.04.153

    Article  CAS  Google Scholar 

  47. Dar P, Dar A, Dar AM, Waqas U (2017) Synthesis of silver nanoparticles of mesocarp of Lagenaria siceraria fruit by using oleylamine and evaluation of its antimicrobial potential against clinically used pathogens. IJMBR 5:42–55

    Google Scholar 

  48. Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3:217–223. https://doi.org/10.1007/s13204-012-0121-9

    Article  CAS  Google Scholar 

  49. Danaei M, Dehghankhold M, Ataei S et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:1–17. https://doi.org/10.3390/pharmaceutics10020057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the research facilities provided by the Central University of Kerala lab. JM acknowledges the ICMR-SRF (45/41/2019-BIO/BMS) fellowship from the Government of India. The IM acknowledges the DBT-RA in Biotechnology & Life Sciences, Government of India.

Funding

This work was the partial financial support from DST-EMR (2016/003715/BBM), SERB-EMEQ/051/2014, and EEQ/2018/001085.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: RK, JM, IM. Analyzed the data: RK, JM, IM. Contributed reagents/materials/analysis tools: RK, BS. Wrote the paper: JM, RK, IM, RMME.

Corresponding author

Correspondence to Ranjith Kumavath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent for Publication

The authors have approved its submission for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moopantakath, J., Imchen, M., Sreevalsan, A. et al. Biosynthesis of Silver Chloride Nanoparticles (AgCl-NPs) from Extreme Halophiles and Evaluation of Their Biological Applications. Curr Microbiol 79, 266 (2022). https://doi.org/10.1007/s00284-022-02970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02970-x

Navigation