Skip to main content
Log in

Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (γ-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 μM Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axen R, Drevin H, Carlsson J (1975) Preparation of modified agarose gels containing thiol groups. Acta Chem Scand [B] 29: 471–474

    Google Scholar 

  • Butt SR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51: 351–364

    Google Scholar 

  • Fahey RC, Newton GL, Dorian R, Kosower EM (1981) Analysis of biological thiols: quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography. Anal Biochem 111: 357–365

    Google Scholar 

  • Fogel S, Welch JW (1982) Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci USA 79: 5342–5346

    Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44c: 361–369

    Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86: 6838–6842

    Google Scholar 

  • Grill E, Thumann J, Winnacker E-L, Zenk MH (1988) Induction of heavy metal-binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7: 375–378

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing petides of higher plants. Science 230: 674–676

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1986) Synthesis of seven different homologous phytochelatins in metal exposed Schizosac-charomyces pombe cells. FEBS-Lett 197: 115–120

    Google Scholar 

  • Grill E, Zenk MH (1989) Wie schützen sich Pflanzen vor toxischen Schwermetallen? Chemie in unserer Zeit 23: 193–199

    Google Scholar 

  • Hamer DH, Thiele DJ, Lemontt JE (1985) Functional autoregulation of yeast copperthionein. Science 228: 685–690

    Google Scholar 

  • Isobe M, Uyakul D, Liu K, Goto T (1990) FAB-MS/MS spectrometry in determining the primary structure of γ-glutamyl-containing peptides. Agric Biol Chem 54: 1651–1660

    Google Scholar 

  • Joho M, Imai M, Murayama T (1985) Different distribution of Cd2+ between Cd-sensitive and Cd-resistant strains of Saccharomyces cerevisiae. J Gen Microbiol 131: 53–56

    Google Scholar 

  • Kägi JHR, Nordberg M (1979) Metallothionein. Experientia 34. Suppl Birkhäuser, Basel Boston Stuttgart

    Google Scholar 

  • Kondo N, Isobe M, Imai K, Goto T (1984) Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast. Tetrahedron Lett 25: 3869–3872

    Google Scholar 

  • Kon-Ya Y, Yoshimura E, Yamazaki S, Toda S (1990) Identification of Cd-binding peptides of fission yeast Schizosaccharomyces pombe by FRIT-FAB LC/MS. Agric Biol Chem 54: 3327–3329

    Google Scholar 

  • Lerch K (1980) Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature 284: 368–370

    Google Scholar 

  • Mehra RK, Tabet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci USA 85: 8815–8819

    Google Scholar 

  • Mortimer RK, Schild D, Contopoulou CR, Kans JA (1989) Genetic map of Saccharomyces cerevisiae, edn 10. Yeast 5: 321–403

    Google Scholar 

  • Newton G, Dorian R, Fahey RC (1981) Analysis of biological thiols: derivatisation with monobromobimane and separation by reversed-phase HPLC. Anal Biochem 114: 383–387

    Google Scholar 

  • Phares EF (1971) Large scale growth of bacteria. Methods Enzymol 22: 441–476

    Google Scholar 

  • Rauser WE (1990) Phytochelatins, Annu Rev Biochem 59: 61–86

    Google Scholar 

  • Roepstorf P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectr 11: 601

    Google Scholar 

  • Russel P, Nurse P (1986) Cd2+ functions as an inducer in the mitotic control of fission yeast. Cell 45: 145–153

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeart genetics, Cold Spring Harbor Press, Cold Spring Harbor, New York, p 165

    Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Physiol Mol Biol 41: 553–575

    Google Scholar 

  • Steffens JC, Hunt DF, Williams BG (1986) Accumulation of nonprotein metal-binding polypeptides (γ-glutamyl-cysteinyl)n-glycine in selected cadmium resistant tomato cells. J Biol Chem 261: 13879–13882

    Google Scholar 

  • Strasdeit H, Duhme A-K, Kneer R, Zenk MH, Hermes C, Nolting H-F (1991) Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. J Chem Soc Chem Commun 16: 1129–1130

    Google Scholar 

  • Tohoyama H, Inouhe M, Joho M, Murayama T (1990) Resistance to cadmium is under the control of the CAD2 gene in the yeast Saccharomyces cerevisiae. Curr Genet 18: 181–185

    Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for Neurospora (medium N). Microbial Gen Bull 13: 42–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kneer, R., Kutchan, T.M., Hochberger, A. et al. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch. Microbiol. 157, 305–310 (1992). https://doi.org/10.1007/BF00248673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248673

Key words

Navigation