Skip to main content
Log in

Biosynthesis of nanostructured silver by green algae and evaluation of its microbicidal property against pathogenic microbes

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Present study highlights the in vitro facile approach of silver nanoparticles (AgNPs) synthesis using cell free extract of two green algae Chlorococcum humicola and Chlorella vulgaris, which offers an ecofriendly, economical and sustainable way of biosynthesis of nanoparticle. The colour change from light green to darkest brown within 24 h, and the surface plasma resonance (SPR) peak at 435 and 437 nm for C. vulgaris and C. humicola, respectively, confirms the creation of AgNPs. Transmission electron spectroscopy (TEM) pictures depicted that the average particle size of C. vulgaris and C. humicola synthesized AgNPs were 12.83 and 10.69 nm, respectively. The AgNPs were well scattered, highly stable, and spherical with a tendency of agglomerations. The energy dispersive X-ray (EDX) analysis of particles confirmed the purity and polydispersed character of AgNPs. The biomolecules involved in silver reduction were identified by using Fourier transform infrared spectroscopy (FTIR), which illustrated that proteins and peptides act as capping agents for the formation of AgNPs. Furthermore, the biosynthesized AgNPs exhibited high microbicidal activity against disease causing bacteria viz. Escherichia coli MTCC1687, Salmonella typhi MTCC3231, Klebsiella pneumoniae MTCC4032 and fungus viz. Fusarium solani MTCC6773, Fusarium moniliforme MTCC6576, Penicillium sp. MTCC6489. Use of such a microalgal system for the formation of metal nanomaterials provides a simple, cost-effective alternative model over other methods and the biosynthesized nanoparticles can be used for a number of biotechnological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2017) Bactericidal efficacy of Ag and Au nanoparticles synthesized by marine alga Laurencia catarinensis. Int J Pharm Res Allied Sci 11(5):176–186

    CAS  Google Scholar 

  • Abdel-Raouf N, Alharbi RM, Al-Enazi NM, Alkhulaifi MM, Ibraheem IBM (2018) Rapid biosynthesis of silver nanoparticles using the marine red alga Laurencia catarinensis and their characterization. Beni-Suef Univ J Basic Appl Sci 7:150–157

    Google Scholar 

  • Al-Bahrani R, Raman J, Laxmanan H, Hassan AA, Sabaratnam V (2017) Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett 186:21–25

    Article  CAS  Google Scholar 

  • Al-Zubaidi S, Al-Ayafi A, Abdelkader H (2019) Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus Niger Isolate. J Nanotechnol Res 1(1):023–036. https://doi.org/10.26502/jnr.2688-8521002

    Article  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  Google Scholar 

  • Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh NN, Bhattacharjee CR (2020) Alga-mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. App Organomet Chem. https://doi.org/10.1002/aoc.5597

    Article  Google Scholar 

  • Dehkordi SH, Fatemeh H, Azizollah EK (2011) An in vitro evaluation of antibacterial effect of silver nanoparticles on Staphylococcus aureus isolated from bovine subclinical mastitis. Afr J Biotechnol 10(52):10795–10797

    Article  CAS  Google Scholar 

  • Devatha CP, Thalla AK, Katte SY (2016) Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod 139:1425–1435

    Article  CAS  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agent Chemoth 46(8):2668–2670

    Article  CAS  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohyd Polym 75:385–389

    Article  CAS  Google Scholar 

  • Eroglu E, Chen X, Bradshaw M, Agarwal V, Zou J, Stewart SG, Duan X, Lamb RN, Smith SM, Raston CL, Iyer KS (2013) Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Adv 3:1009–1012

    Article  CAS  Google Scholar 

  • Fukuyama Y, Yoshida S, Yanagisawa S, Shimizu M (1999) A study on the differences between oral squamous cell carcinomas and normal oral mucosas measured by Fourier transform infrared spectroscopy. Biospectros 5(2):117–126

    Article  CAS  Google Scholar 

  • Govindaraju K, Kiruthiga V, Singaravelu G (2008) Evaluation of biosynthesized silver nanoparticles against fungal pathogens of mulberry Morus indica. J Biopesticides 1(1):101–104

    Google Scholar 

  • Govindaraju K, Kiruthiga V, Ganesh Kumar V, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga Sargassum wightii grevilli and their antibacterial effect. J Nanosci Nanotechnol 9:1–5

    Article  CAS  Google Scholar 

  • Hashemi Z, Mizwari ZM, Mohammadi-Aghdam S, Mortazavi-Derazkola S, Ebrahimzadeh MA (2022) Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab J Chem 15(1):103525

    Article  CAS  Google Scholar 

  • Inoue Y, Uota M, Torikai T, Watari T, Noda I, Hotokebuchi T (2010) Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate. J Biomed Mater Res 92A(3):1171–1180

    CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdarb JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  Google Scholar 

  • Jain AS, Pawar PS, Sarkar A, Junnuthula V, Dyawanapelly S (2021) Bionanofactories for green synthesis of silver nanoparticles: toward antimicrobial applications. Int J Mol Sci 22(21):11993

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan JS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials, history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  • Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Bios 3:1–8

    Google Scholar 

  • Kannan RRR, Stirk WA, Staden JV (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Sci Bot 86:1–4

    Article  CAS  Google Scholar 

  • Kim M, Jeune KH (2009) Use of FT-IR to identify enhanced biomass production and biochemical pool shifts in the marine microalgae, Chlorella ovalis, cultured in media composed of different ratios of deep seawater and fermented animal wastewater. J Microbiol Biotechnol 19:1206–1212

    CAS  Google Scholar 

  • Kim SW, Kyoung SK, Kabir L, Young-Jae K, Seung BK, Mooyoung J, Sang-Jun S, Ha-Sun K, Seok-Joon C, Jong KK, Youn SL (2009) An In Vitro Study of the Antifungal Effect of Silver Nanoparticles on Oak Wilt Pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764

    Google Scholar 

  • Kim D-Y, Saratale RG, Shinde S, Syed A, Ameen F, Ghodake G (2017) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918

    Article  CAS  Google Scholar 

  • Kong H, Jang J (2006) One-step fabrication of silver nanoparticles embedded polymer nanofibres by radical mediated dispersion polymerization. Chem Community 28:3010–3012

    Article  CAS  Google Scholar 

  • Li Z, Lee D, Sheng XX, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release killing and contact-killing capabilities. Langmuir 22:9820–9823

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Oza G, Pandey S, Mewada A, Kalita G, Sharon M (2012) Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 3:1405–1412

    CAS  Google Scholar 

  • Parial D, Patra HK, Dasgupta AK, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47(1):22–29

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):1–10

    Article  Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24(2):192–196

    CAS  Google Scholar 

  • Raza ZA, Rehman A, Mohsin M, Bajwa SZ, Anwar F, Naeem A, Ahmad N (2015) Development of antibacterial cellulosic fabric via clean impregnation of silver nanoparticles. J Clean Prod 101:377–386

    Article  CAS  Google Scholar 

  • Sathishkumar RS, Sundaramanickam A, Srinath R, Ramesh T, Saranya K, Meena M, Surya P (2019) Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc 23(8):1180–1191

    Article  CAS  Google Scholar 

  • Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spect 43:13–25

    Article  CAS  Google Scholar 

  • Setua P, Chakraborty A, Seth D, Bhatta MU, Satyam PV, Sarkar N (2007) Synthesis, optical properties, and surface enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. J Phys Chem C 111:3901–3907

    Article  CAS  Google Scholar 

  • Sharma KV, Yngard AR, Lin Y (2009) Silver nanoparticle: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Ssekatawa K, Byarugaba DK, Kato CD, Wampande EM, Ejobi F, Nakavuma JL, Maaza M, Sackey J, Nxumalo E, Kirabira JB (2021) Green strategy-based synthesis of silver nanoparticles for antibacterial applications. Front Nanotechnol 3:697303

    Article  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    Article  CAS  Google Scholar 

  • Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P (2008) Prevention of Staphylococcus epidermisdis biofilm formation using a low temperature processed silver doped phenyltriethoxysilane solgel coating. Biomater 29:963–969

    Article  CAS  Google Scholar 

  • Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Green synthesis of silver nanoparticles using marine algae Caulerpa racemose and their antibacterial activity against some human pathogens. Indian J Exp Biol 52:393–399

    Google Scholar 

  • Suman T, Radhika Rajasree S, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106:74–78

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biomed 6:257–262

    Article  CAS  Google Scholar 

  • Thirumalai AV, Prabhu D, Soniya M (2010) Stable silver nanoparticle synthesizing methods and its applications. Res J Biol Sci 1:259–270

    Google Scholar 

  • Torabfam M, Yüce M (2020) Microwave-assisted green synthesis of silver nanoparticles using dried extracts of Chlorella vulgaris and antibacterial activity studies. Green Process Synth 9(1):283–293

    Article  Google Scholar 

  • Vivek M, Senthil Kumar P, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Medical Biotech 3(3):143–148

    CAS  Google Scholar 

  • Wypij M, Jedrzejewski T, Trzcinska-Wencel J, Ostrowski M, Rai M, Golinska P (2021) Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface attached proteins. Front Microbiol 12:632505

    Article  Google Scholar 

Download references

Acknowledgements

The author Sonal Dixit acknowledges DSKPDF Cell, Pune, India, and University Grant Commission, New Delhi, India, for the financial assistance in form of D.S. Kothari Postdoctoral Fellowship (F4-2/2006 (BSR)/BL/15-16/0156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. P. Singh or Yogesh Kumar Sharma.

Ethics declarations

Conflict of interest

The corresponding author on behalf of all the authors declares that there is not any type of conflict among them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., Vishnoi, N., Tripathi, N.M. et al. Biosynthesis of nanostructured silver by green algae and evaluation of its microbicidal property against pathogenic microbes. Environmental Sustainability 5, 197–206 (2022). https://doi.org/10.1007/s42398-022-00223-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-022-00223-y

Keywords

Navigation