Skip to main content

Advertisement

Log in

Evaluation of dentinal tubule occlusion and pulp tissue response after using 980-nm diode laser for dentin hypersensitivity treatment

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the effectiveness of the 980-nm diode laser for dentinal tubule occlusion, measure the intrapulpal temperature, and investigate the dental pulp response.

Materials and methods

The dentinal samples were randomly divided into G1–G7 groups: control; 980-nm laser irradiation (0.5 W, 10 s; 0.5 W, 10 s × 2; 0.8 W, 10 s; 0.8 W, 10 s × 2; 1.0 W, 10 s; 1.0 W, 10 s × 2). The dentin discs were applied for laser irradiation and analyzed by scanning electron microscopy (SEM). The intrapulpal temperature was measured on the 1.0-mm and 2.0-mm thickness samples, and then divided into G2–G7 groups according to laser irradiation. Moreover, forty Sprague Dawley rats were randomly divided into the laser-irradiated group (euthanized at 1, 7, and 14 days after irradiation) and the control group (non-irradiated). qRT-PCR, histomorphology, and immunohistochemistry analysis were employed to evaluate the response of dental pulp.

Results

SEM indicated the occluding ratio of dentinal tubules in the G5 (0.8 W, 10 s × 2) and G7 (1.0 W, 10 s × 2) were significantly higher than the other groups (p < 0.05). The maximum intrapulpal temperature rises in the G5 were lower than the standard line (5.5 ℃). qRT-PCR showed that the mRNA expression level of TNF-α and HSP-70 upregulated significantly at 1 day (p < 0.05). Histomorphology and immunohistochemistry analysis showed that, compared with the control group, the inflammatory reaction was slightly higher at the 1 and 7 days (p < 0.05) and decreased to the normal levels at 14 days (p > 0.05).

Conclusions

A 980-nm laser at a power of 0.8 W with 10 s × 2 defines the best treatment for dentin hypersensitivity in terms of compromise between the efficacy of the treatment and the safety of the pulp.

Clinical relevance

The 980-nm laser is an effective option for treating dentin sensitivity. However, we need to ensure the safety of the pulp during laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the corresponding author.

References

  1. Hu ML, Zheng G, Lin H, Yang M, Zhang YD, Han JM (2019) Network meta-analysis on the effect of desensitizing toothpastes on dentine hypersensitivity. J Dent 88:103170. https://doi.org/10.1016/j.jdent.2019.07.008

    Article  PubMed  Google Scholar 

  2. Hu ML, Zheng G, Zhang YD, Yan X, Li XC, Lin H (2018) Effect of desensitizing toothpastes on dentine hypersensitivity: a systematic review and meta-analysis. J Dent 75:12–21. https://doi.org/10.1016/j.jdent.2018.05.012

    Article  PubMed  Google Scholar 

  3. FavaroZeola L, Soares PV, Cunha-Cruz J (2019) Prevalence of dentin hypersensitivity: systematic review and meta-analysis. J Dent 81:1–6. https://doi.org/10.1016/j.jdent.2018.12.015

    Article  Google Scholar 

  4. Mahdian M, Behboodi S, Ogata Y, Natto ZS (2021) Laser therapy for dentinal hypersensitivity. Cochrane Database Syst Rev 7:CD009434. https://doi.org/10.1002/14651858.CD009434.pub2

    Article  PubMed  Google Scholar 

  5. Marto CM, Baptista Paula A, Nunes T, Pimenta M, Abrantes AM, Pires AS, Laranjo M, Coelho A, Donato H, Botelho MF, Marques Ferreira M, Carrilho E (2019) Evaluation of the efficacy of dentin hypersensitivity treatments-a systematic review and follow-up analysis. J Oral Rehabil 46:952–990. https://doi.org/10.1111/joor.12842

    Article  PubMed  Google Scholar 

  6. Martins CC, Firmino RT, Riva JJ, Ge L, Carrasco-Labra A, Brignardello-Petersen R, Colunga-Lozano LE, Granville-Garcia AF, Costa FO, Yepes-Nunez JJ, Zhang Y, Schunemann HJ (2020) Desensitizing toothpastes for dentin hypersensitivity: a network meta-analysis. J Dent Res 99:514–522. https://doi.org/10.1177/0022034520903036

    Article  PubMed  Google Scholar 

  7. Bae JH, Kim YK, Myung SK (2015) Desensitizing toothpaste versus placebo for dentin hypersensitivity: a systematic review and meta-analysis. J Clin Periodontol 42:131–141. https://doi.org/10.1111/jcpe.12347

    Article  PubMed  Google Scholar 

  8. Lin PY, Cheng YW, Chu CY, Chien KL, Lin CP, Tu YK (2013) In-office treatment for dentin hypersensitivity: a systematic review and network meta-analysis. J Clin Periodontol 40:53–64. https://doi.org/10.1111/jcpe.12011

    Article  PubMed  Google Scholar 

  9. Guo L, Kayastha PK, Chen L, Shakya M, Chen X (2019) Clinical evaluation of Nd:YAG laser with and without dentin bonding agent for the treatment of occlusal hypersensitivity. Oper Dent 44:227–234. https://doi.org/10.2341/17-265-C

    Article  PubMed  Google Scholar 

  10. Shan Z, Ji J, McGrath C, Gu M, Yang Y (2021) Effects of low-level light therapy on dentin hypersensitivity: a systematic review and meta-analysis. Clin Oral Investig 25:6571–6595. https://doi.org/10.1007/s00784-021-04183-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Machado AC, Viana IEL, Farias-Neto AM, Braga MM, de Paula Eduardo C, de Freitas PM, Aranha ACC (2018) Is photobiomodulation (PBM) effective for the treatment of dentin hypersensitivity? A systematic review. Lasers Med Sci 33:745–753. https://doi.org/10.1007/s10103-017-2403-7

    Article  PubMed  Google Scholar 

  12. Rezazadeh F, Dehghanian P, Jafarpour D (2019) Laser effects on the prevention and treatment of dentinal hypersensitivity: a systematic review. J Lasers Med Sci 10:1–11. https://doi.org/10.15171/jlms.2019.01

    Article  PubMed  Google Scholar 

  13. Zhou K, Liu Q, Yu X, Zeng X (2021) Laser therapy versus topical desensitising agents in the management of dentine hypersensitivity: a meta-analysis. Oral Dis 27:422–430. https://doi.org/10.1111/odi.13309

    Article  PubMed  Google Scholar 

  14. Kimura Y, Wilder-Smith P, Yonaga K, Matsumoto K (2000) Treatment of dentine hypersensitivity by lasers: a review. J Clin Periodontol 27(10):715–721. https://doi.org/10.1034/j.1600-051x.2000.027010715.x

    Article  PubMed  Google Scholar 

  15. Sgolastra F, Petrucci A, Gatto R, Monaco A (2011) Effectiveness of laser in dentinal hypersensitivity treatment: a systematic review. J Endod 37:297–303. https://doi.org/10.1016/j.joen.2010.11.034

    Article  PubMed  Google Scholar 

  16. Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A (2013) Lasers for the treatment of dentin hypersensitivity: a meta-analysis. J Dent Res 92:492–499. https://doi.org/10.1177/0022034513487212

    Article  PubMed  Google Scholar 

  17. Bellal S, Feghali RE, Mehta A, Namachivayam A, Benedicenti S (2021) Efficacy of near infrared dental lasers on dentinal hypersensitivity: a meta-analysis of randomized controlled clinical trials. Lasers Med Sci. https://doi.org/10.1007/s10103-021-03391-1

    Article  PubMed  Google Scholar 

  18. Solati M, Fekrazad R, Vahdatinia F, Farmany A, Farhadian M, Hakimiha N (2021) Dentinal tubule blockage using nanobioglass in the presence of diode (980 nm) and Nd:YAG lasers: an in vitro study. Clin Oral Investig. https://doi.org/10.1007/s00784-021-04279-8

    Article  PubMed  Google Scholar 

  19. Pourshahidi S, Ebrahimi H, Mansourian A, Mousavi Y, Kharazifard M (2019) Comparison of Er, Cr:YSGG and diode laser effects on dentin hypersensitivity: a split-mouth randomized clinical trial. Clin Oral Investig 23:4051–4058. https://doi.org/10.1007/s00784-019-02841-z

    Article  PubMed  Google Scholar 

  20. Kayar NA, Hatipoğlu M (2021) Can we determine an appropriate timing to avoid thermal pulp hazard during gingivectomy procedure? An in vitro study with diode laser. Photobiomodulation Photomed Laser Surg 39:94–99. https://doi.org/10.1089/photob.2019.4799

    Article  Google Scholar 

  21. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530. https://doi.org/10.1016/0030-4220(65)90015-0

    Article  PubMed  Google Scholar 

  22. Braun A, Kecsmar S, Krause F, Berthold M, Frentzen M, Frankenberger R, Schelle F (2015) Effect of simulated pulpal fluid circulation on intrapulpal temperature following irradiation with an Nd:YVO4 laser. Lasers Med Sci 30:1197–1202. https://doi.org/10.1007/s10103-014-1540-5

    Article  PubMed  Google Scholar 

  23. Ko Y, Park J, Kim C, Park J, Baek SH, Kook YA (2014) Treatment of dentin hypersensitivity with a low-level laser-emitting toothbrush: double-blind randomised clinical trial of efficacy and safety. J Oral Rehabil 41:523–531. https://doi.org/10.1111/joor.12170

    Article  PubMed  Google Scholar 

  24. Sgreccia PC, Barbosa RES, Dame-Teixeira N, Garcia FCP (2020) Low-power laser and potassium oxalate gel in the treatment of cervical dentin hypersensitivity-a randomized clinical trial. Clin Oral Investig 24:4463–4473. https://doi.org/10.1007/s00784-020-03311-7

    Article  PubMed  Google Scholar 

  25. Liu Y, Gao J, Gao Y, Xu S, Zhan X, Wu B (2013) In vitro study of dentin hypersensitivity treated by 980-nm diode laser. J Lasers Med Sci 4(3):111–119

    PubMed  PubMed Central  Google Scholar 

  26. Umana M, Heysselaer D, Tielemans M, Compere P, Zeinoun T, Nammour S (2013) Dentinal tubules sealing by means of diode lasers (810 and 980 nm): a preliminary in vitro study. Photomed Laser Surg 31:307–314. https://doi.org/10.1089/pho.2012.3443

    Article  PubMed  Google Scholar 

  27. Santis LR, Silva TM, Haddad BA, Goncalves LL, Goncalves SE (2017) Influence of dentin thickness on intrapulpal temperature under simulated pulpal pressure during Nd:YAG laser irradiation. Lasers Med Sci 32:161–167. https://doi.org/10.1007/s10103-016-2098-1

    Article  PubMed  Google Scholar 

  28. Jung JH, Kim DH, Yoo KH, Yoon SY, Kim Y, Bae MK, Chung J, Ko CC, Kwon YH, Kim YI (2019) Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: an in vitro study. Clin Oral Investig 23:253–266. https://doi.org/10.1007/s00784-018-2432-z

    Article  PubMed  Google Scholar 

  29. Yu J, Yang H, Li K, Lei J, Zhou L, Huang C (2016) A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study. J Dent 50:21–29. https://doi.org/10.1016/j.jdent.2016.04.005

    Article  PubMed  Google Scholar 

  30. Bergamini MR, Bernardi MM, Sufredini IB, Ciaramicoli MT, Kodama RM, Kabadayan F, Saraceni CH (2014) Dentin hypersensitivity induces anxiety and increases corticosterone serum levels in rats. Life Sci 98:96–102. https://doi.org/10.1016/j.lfs.2014.01.004

    Article  PubMed  Google Scholar 

  31. Bergamini MR, Kabadayan F, Bernardi MM, Suffredini IB, Ciaramicoli MT, Kodama RM, Saraceni CH (2017) Stress and its role in the dentin hypersensitivity in rats. Arch Oral Biol 73:151–160. https://doi.org/10.1016/j.archoralbio.2016.10.007

    Article  PubMed  Google Scholar 

  32. Guler C, Alan H, Demir P, Vardi N (2020) Effects of diode laser irradiation on dental pulps in rats. Bratisl Lek Listy 121:293–296. https://doi.org/10.4149/BLL_2020_046

    Article  PubMed  Google Scholar 

  33. Lee BS, Chang CW, Chen WP, Lan WH, Lin CP (2005) In vitro study of dentin hypersensitivity treated by Nd:YAP laser and bioglass. Dent Mater 21:511–519. https://doi.org/10.1016/j.dental.2004.08.002

    Article  PubMed  Google Scholar 

  34. Kurt S, Kirtiloglu T, Yilmaz NA, Ertas E, Orucoglu H (2018) Evaluation of the effects of Er:YAG laser, Nd:YAG laser, and two different desensitizers on dentin permeability: in vitro study. Lasers Med Sci 33:1883–1890. https://doi.org/10.1007/s10103-018-2546-1

    Article  PubMed  Google Scholar 

  35. Lee EMR, Borges R, Marchi J, de Paula Eduardo C, Marques MM (2020) Bioactive glass and high-intensity lasers as a promising treatment for dentin hypersensitivity: an in vitro study. J Biomed Mater Res B Appl Biomater 108:939–947. https://doi.org/10.1002/jbm.b.34446

    Article  PubMed  Google Scholar 

  36. Matsui S, Kozuka M, Takayama J, Ueda K, Nakamura H, Ito K, Kimura M, Miura H, Tsujimoto Y, Kondoh T, Ikemi T, Matsushima K (2008) Stimulatory Effects of CO(2) Laser, Er:YAG laser and Ga-Al-As laser on exposed dentinal tubule orifices. J Clin Biochem Nutr 42(2):138–143. https://doi.org/10.3164/jcbn.2008020

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhuang H, Liang Y, Xiang S, Li H, Dai X, Zhao W (2021) Dentinal tubule occlusion using Er:YAG Laser: an in vitro study. J Appl Oral Sci 29:e20200266. https://doi.org/10.1590/1678-7757-2020-0266

    Article  PubMed Central  Google Scholar 

  38. Oncu E, Karabekiroglu S, Unlu N (2017) Effects of different desensitizers and lasers on dentine tubules: an in-vitro analysis. Microsc Res Tech 80:737–744. https://doi.org/10.1002/jemt.22859

    Article  PubMed  Google Scholar 

  39. Brignardello-Petersen R (2017) Cyanoacrylate and laser treatment result in small improvement in oral health-related quality of life for patients with dentin hypersensitivity. J Am Dent Assoc 148:e166. https://doi.org/10.1016/j.adaj.2017.08.002

    Article  PubMed  Google Scholar 

  40. Brignardello-Petersen R (2017) Low-level laser therapy may reduce dentin hypersensitivity after scaling and root planing. J Am Dent Assoc 148:e126. https://doi.org/10.1016/j.adaj.2017.06.022

    Article  PubMed  Google Scholar 

  41. Benetti F, Lemos CAA, de Oliveira Gallinari M, Terayama AM, Briso ALF, de Castilho Jacinto R, Sivieri-Araujo G, Cintra LTA (2018) Influence of different types of light on the response of the pulp tissue in dental bleaching: a systematic review. Clin Oral Investig 22:1825–1837. https://doi.org/10.1007/s00784-017-2278-9

    Article  PubMed  Google Scholar 

  42. Fornaini C, Brulat-Bouchard N, Medioni E, Zhang S, Rocca JP, Merigo E (2020) Nd:YAP laser in the treatment of dentinal hypersensitivity: an ex vivo study. J Photochem Photobiol B. 203:111740. https://doi.org/10.1016/j.jphotobiol.2019.111740

    Article  PubMed  Google Scholar 

  43. Sari T, Celik G, Usumez A (2015) Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 30:577–582. https://doi.org/10.1007/s10103-013-1375-5

    Article  PubMed  Google Scholar 

  44. Yilanci H, Yildirim ZB, Ramoglu SI (2017) Intrapulpal temperature increase during Er:YAG laser-aided debonding of ceramic brackets. Photomed Laser Surg 35:217–222. https://doi.org/10.1089/pho.2016.4198

    Article  PubMed  Google Scholar 

  45. Al-Karadaghi TS, Al-Saedi AA, Al-Maliky MA, Mahmood AS (2016) The effect of bleaching gel and (940 nm and 980 nm) diode lasers photoactivation on intrapulpal temperature and teeth whitening efficiency. Aust Endod J 42:112–118. https://doi.org/10.1111/aej.12146

    Article  PubMed  Google Scholar 

  46. Nalbantgil D, Tozlu M, Oztoprak MO (2018) Comparison of different energy levels of Er:YAG laser regarding intrapulpal temperature change during safe ceramic bracket removal. Photomed Laser Surg 36:209–213. https://doi.org/10.1089/pho.2017.4397

    Article  PubMed  Google Scholar 

  47. Akarsu S, AktugKarademir S (2019) Influence of bulk-fill composites, polimerization modes, and remaining dentin thickness on intrapulpal temperature rise. Biomed Res Int 2019:4250284. https://doi.org/10.1155/2019/4250284

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ser-Od T, Yasumoto M, Al-Wahabi A, Nakajima K, Murakami S, Matsuzaka K, Inoue T (2016) Effects of CO2 lasers on dental pulp biology in rats. Photomed Laser Surg 34:157–163. https://doi.org/10.1089/pho.2015.3997

    Article  PubMed  Google Scholar 

  49. Lee DH, Murakami S, Khan SZ, Matsuzaka K, Inoue T (2013) Pulp responses after CO(2) laser irradiation of rat dentin. Photomed Laser Surg 31:59–64. https://doi.org/10.1089/pho.2012.3279

    Article  PubMed  Google Scholar 

  50. Hall BE, Zhang L, Sun ZJ, Utreras E, Prochazkova M, Cho A, Terse A, Arany P, Dolan JC, Schmidt BL, Kulkarni AB (2016) Conditional TNF-alpha overexpression in the tooth and alveolar bone results in painful pulpitis and osteitis. J Dent Res 95:188–195. https://doi.org/10.1177/0022034515612022

    Article  PubMed Central  Google Scholar 

  51. Xu F, Qiao L, Zhao Y, Chen W, Hong S, Pan J, Jiang B (2019) The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther 10:134. https://doi.org/10.1186/s13287-019-1247-4

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Zhao Z, Wen J, Wang Y, Zhao M, Peng L, Zang C, Que K (2019) TNF-alpha differently regulates TRPV2 and TRPV4 channels in human dental pulp cells. Int Endod J 52:1617–1628. https://doi.org/10.1111/iej.13174

    Article  PubMed  Google Scholar 

  53. Pezelj-Ribaric S, Anic I, Brekalo I, Miletic I, Hasan M, Simunovic-Soskic M (2002) Detection of tumor necrosis factor alpha in normal and inflamed human dental pulps. Arch Med Res 33(5):482–484. https://doi.org/10.1016/s0188-4409(02)00396-x

    Article  PubMed  Google Scholar 

  54. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. The Hsp70 chaperone network. 20:665–680. https://doi.org/10.1038/s41580-019-0133-3

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 81870798 and 82170927) and the National Science Basic Research Plan in Shaanxi Province of China (2020JM-414).

Author information

Authors and Affiliations

Authors

Contributions

Yuchen Meng: conceptualization, methodology, formal analysis, data curation, writing—original draft preparation, writing—review and editing, visualization. Fan Huang: methodology, validation, writing—review and editing. Silin Wang: investigation, writing—review and editing. Xin Huang: investigation, writing—review and editing. Yi Lu: investigation, writing—review and editing. Yuncong Li: methodology, investigation. Yulin Dong: conceptualization, investigation, writing—review and editing, supervision, project administration. Dandan Pei: conceptualization, resources, writing—review and editing, supervision, project administration.

Corresponding authors

Correspondence to Yulin Dong or Dandan Pei.

Ethics declarations

Ethical approval

This study was approved by Ethics Committee of School and Hospital of Stomatology, Xi’an Jiaotong University (approved number xjkqll [2018]030), and Biomedical Ethics Committee of Xi’an Jiaotong University Health Science Center (approved number 20221440). The procedures were conducted in compliance with all ethical standards of the Declaration of Helsinki.

Informed consent

Human teeth were used in this study after obtaining informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Huang, F., Wang, S. et al. Evaluation of dentinal tubule occlusion and pulp tissue response after using 980-nm diode laser for dentin hypersensitivity treatment. Clin Oral Invest 27, 4843–4854 (2023). https://doi.org/10.1007/s00784-023-05114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05114-y

Keywords

Navigation