Skip to main content
Log in

β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A growing number of siderophores are found to contain β-hydroxyaspartic acid (β-OH-Asp) as a functional group for Fe(III) coordination, along with the more common catechol and hydroxamic acid groups. This review covers the structures, biosynthesis, and reactions of peptidic β-OH-Asp siderophores. Hydroxylation of Asp in siderophore biosynthesis is predicted to be carried out either through discrete aspartyl β-hydroxylating enzymes or through hydroxylating domains within non-ribosomal peptide synthetases, both of which display sequence homology to known non-heme iron(II), α-ketoglutarate-dependent dioxygenases. Ferric complexes of β-OH-Asp siderophores are photoreactive, resulting in reduction of Fe(III) and oxidative cleavage of the siderophore to yield distinct types of photoproducts. Probing the photoreactivity of synthetic Fe(III)-α-hydroxycarboxylate clusters yields mechanistic insights into the different photoproducts observed for β-OH-Asp and other α-hydroxycarboxylate siderophore Fe(III) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zane H, Butler A (2013) In: Reedijk J, Poppelmeier K (eds) Comprehensive inorganic chemistry II, vol 3. Elsevier, Amsterdam, pp 1–20

    Google Scholar 

  2. Sandy M, Butler A (2009) Chem Rev 109:4580–4595

    Article  CAS  Google Scholar 

  3. Gibson F, Magrath DI (1969) Biochim Biophys Acta 192:175–184

    Article  CAS  Google Scholar 

  4. Amin SA, Green DH, Küpper FC, Carrano CJ (2009) Inorg Chem 48:11451–11458

    Article  CAS  Google Scholar 

  5. Teintze M, Hossain MB, Barnes CL, Leong J, Van der Helm D (1981) Biochemistry 20:6446–6457

    Article  CAS  Google Scholar 

  6. Teintze M, Leong J (1981) Biochemistry 20:6457–6462

    Article  CAS  Google Scholar 

  7. Reid RT, Livet DH, Faulkner DJ, Butler A (1993) Nature 366:455

    Article  CAS  Google Scholar 

  8. Kem MP, Butler A (2015) Biometals 28:445–459

    Article  CAS  Google Scholar 

  9. Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 287:1245–1247

    Article  CAS  Google Scholar 

  10. Homann VV, Sandy M, Tincu JA, Templeton AS, Tebo BM, Butler A (2009) J Nat Prod 72:884–888

    Article  CAS  Google Scholar 

  11. Robertson AW, McCarville NG, MacIntyre LW, Correa H, Haltli B, Marchbank DH, Kerr RG (2018) J Nat Prod. https://doi.org/10.1021/acs.jnatprod.7b00943

    Article  PubMed  Google Scholar 

  12. Matthijs S, Brandt N, Ongena M, Achouak W, Meyer J-M, Budzikiewicz H (2016) Biometals 29:467–485

    Article  CAS  Google Scholar 

  13. Matthijs S, Budzikiewicz H, Schäfer M, Wathelet B, Cornelis P (2008) Z Naturforsch C Biosci 63:8–12

    Article  CAS  Google Scholar 

  14. Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D (1998) Z Naturforsch C Biosci 53:295–304

    Article  CAS  Google Scholar 

  15. Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Environ Microbiol 15:916–927

    Article  CAS  Google Scholar 

  16. Kurth C, Schieferdecker S, Athanasopoulou K, Seccareccia I, Nett M (2016) J Nat Prod 79:865–872

    Article  CAS  Google Scholar 

  17. Kreutzer MF, Nett M (2012) Org Biomol Chem 10:9338–9343

    Article  CAS  Google Scholar 

  18. Baars O, Zhang X, Gibson MI, Stone AT, Morel FMM, Seyedsayamdost MR (2017) Angew Chem 130:545–550

    Article  Google Scholar 

  19. Johnston CW, Skinnider MA, Wyatt MA, Li X, Ranieri MRM, Yang L, Zechel DL, Ma B, Magarvey NA (2015) Nat Commun 6:8421

    Article  CAS  Google Scholar 

  20. Kreutzer MF, Kage H, Nett M (2012) J Am Chem Soc 134:5415–5422

    Article  CAS  Google Scholar 

  21. Serrano Figueroa LO, Pitts B, Uchida M, Richards AM (2015) Can J Chem 94:35–43

    Article  Google Scholar 

  22. Serrano Figueroa LO, Schwarz B, Richards AM (2015) Extremophiles 19:1183–1192

    Article  Google Scholar 

  23. Richards AM (2007) Identification and structural characterization of siderophores produced by halophilic and alkaliphilic bacteria. http://www.dissertations.wsu.edu/Dissertations/Summer2007/A_Richards_072707.pdf. Accessed 30 April 2018

  24. Demange P, Bateman A, Dell A, Abdallah MA (1988) Biochemistry 27:2745–2752

    Article  CAS  Google Scholar 

  25. Kanoh K, Kamino K, Leleo G, Adachi K, Shizuri Y (2003) J Antibiot 56:871–875

    Article  CAS  Google Scholar 

  26. Vargas-Straube MJ, Cámara B, Tello M, Montero-Silva F, Cárdenas F, Seeger M (2016) PLoS One 11:e0151273

    Article  Google Scholar 

  27. Franke J, Ishida K, Hertweck C (2015) Chem Eur J 21:8010–8014

    Article  CAS  Google Scholar 

  28. Franke J, Ishida K, Ishida-Ito M, Hertweck C (2013) Angew Chem Int Ed 52:8271–8275

    Article  CAS  Google Scholar 

  29. Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, Southam G, Magarvey NA (2013) Nat Chem Biol 9:241–243

    Article  CAS  Google Scholar 

  30. Vraspir JM, Holt PD, Butler A (2011) Biometals 24:85–92

    Article  CAS  Google Scholar 

  31. Martinez JS, Butler A (2007) J Inorg Biochem 101:1692–1698

    Article  CAS  Google Scholar 

  32. Meyer J-M, Van Van T, Stintzi A, Berge O, Winkelmann G (1995) Biometals 8:309–317

    Article  CAS  Google Scholar 

  33. Stephan H, Freund S, Beck W, Jung G, Meyer J-M, Winkelmann G (1993) Biometals 6:93–100

    Article  CAS  Google Scholar 

  34. Koglin A, Walsh CT (2009) Nat Prod Rep 26:987–1000

    Article  CAS  Google Scholar 

  35. Crosa JH, Walsh CT (2002) Microbiol Mol Biol Rev 66:223–249

    Article  CAS  Google Scholar 

  36. Sattely ES, Fischbach MA, Walsh CT (2008) Nat Prod Rep 25:757–793

    Article  CAS  Google Scholar 

  37. Parker DL, Lee S-W, Geszvain K, Davis RE, Gruffaz C, Meyer J-M, Torpey JW, Tebo BM (2014) Front Microbiol 5:202

    Article  Google Scholar 

  38. Chen H, Thomas MG, O’Connor SE, Hubbard BK, Burkart MD, Walsh CT (2001) Biochemistry 40:11651–11659

    Article  CAS  Google Scholar 

  39. Chen H, Hubbard BK, O’Connor SE, Walsh CT (2002) Chem Biol 9:103–112

    Article  CAS  Google Scholar 

  40. Chen H, Walsh CT (2001) Chem Biol 8:301–312

    Article  CAS  Google Scholar 

  41. Strieker M, Kopp F, Mahlert C, Essen L-O, Marahiel MA (2007) ACS Chem Biol 2:187–196

    Article  CAS  Google Scholar 

  42. Yin X, Zabriskie TM (2004) ChemBioChem 5:1274–1277

    Article  CAS  Google Scholar 

  43. Hashizume H, Hattori S, Igarashi M, Akamatsu Y (2004) J Antibiot 57:394–399

    Article  CAS  Google Scholar 

  44. Maki H, Miura K, Yamano Y (2001) Antimicrob Agents Chemother 45:1823–1827

    Article  CAS  Google Scholar 

  45. Naruse N, Tenmyo O, Tomita K, Konishi M, Miyaki T, Kawaguchi H, Fukase K, Wakamiya T, Shiba T (1989) J Antibiot 42:837–845

    Article  CAS  Google Scholar 

  46. Scaloni A, Bachmann RC, Takemoto JY, Barra D, Simmaco M, Ballio A (1994) Nat Prod Lett 4:159–164

    Article  CAS  Google Scholar 

  47. Fukuchi N, Isogai A, Nakayama J, Takayama S, Yamashita S, Suyama K, Takemoto JY, Suzuki A (1992) J Chem Soc. Perkin Trans 1:1149–1157

    Article  Google Scholar 

  48. Di Giorgio D, Camoni L, Marchiafava C, Ballio A (1997) Phytochemistry 45:1385–1391

    Article  Google Scholar 

  49. Scaloni A, Dalla Serra M, Amodeo P, Mannina L, Vitale RM, Segre AL, Cruciani O, Lodovichetti F, Greco ML, Fiore A, Gallo M, Ambrosio C, Coraiola M, Menestrina G, Graniti A, Fogliano V (2004) Biochem J 384:25–36

    Article  CAS  Google Scholar 

  50. Singh GM, Fortin PD, Koglin A, Walsh CT (2008) Biochemistry 47:11310–11320

    Article  CAS  Google Scholar 

  51. Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T (1997) J Biol Chem 272:23031–23036

    Article  CAS  Google Scholar 

  52. Neidig ML, Brown CD, Light KM, Fujimori DG, Nolan EM, Price JC, Barr EW, Bollinger JM, Krebs C, Walsh CT, Solomon EI (2007) J Am Chem Soc 129:14224–14231

    Article  CAS  Google Scholar 

  53. Koehntop KD, Emerson JP, Que L (2005) J Biol Inorg Chem 10:87–93

    Article  CAS  Google Scholar 

  54. Bollinger JM, Price John C, Hoffart Lee M, Barr Eric W, Krebs C (2005) Eur J Inorg Chem 2005:4245–4254

    Article  Google Scholar 

  55. Price JC, Barr EW, Tirupati B, Bollinger JM, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  Google Scholar 

  56. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  Google Scholar 

  57. Krebs C, Galonić Fujimori D, Walsh CT, Bollinger JM (2007) Acc Chem Res 40:484–492

    Article  CAS  Google Scholar 

  58. Krebs C, Price JC, Baldwin J, Saleh L, Green MT, Bollinger JM (2005) Inorg Chem 44:742–757

    Article  CAS  Google Scholar 

  59. Grzyska PK, Appelman EH, Hausinger RP, Proshlyakov DA (2010) Proc Natl Acad Sci USA 107:3982–3987

    Article  CAS  Google Scholar 

  60. Mitchell AJ, Dunham NP, Martinie RJ, Bergman JA, Pollock CJ, Hu K, Allen BD, Chang W-C, Silakov A, Bollinger JM, Krebs C, Boal AK (2017) J Am Chem Soc 139:13830–13836

    Article  CAS  Google Scholar 

  61. Bollinger JM, Chang W, Matthews ML, Martinie RJ, Boal AK, Krebs C (2015) 2-Oxoglutarate-dependent oxygenases. R Soc Chem, London, pp 95–122

    Book  Google Scholar 

  62. Agnoli K, Lowe CA, Farmer KL, Husnain SI, Thomas MS (2006) J Bacteriol 188:3631–3644

    Article  CAS  Google Scholar 

  63. Matthijs S, Laus G, Meyer J-M, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H, Cornelis P (2009) Biometals 22:951

    Article  CAS  Google Scholar 

  64. Stachelhaus T, Mootz HD, Marahiel MA (1999) Chem Biol 6:493–505

    Article  CAS  Google Scholar 

  65. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) Nucleic Acids Res 45:W36–W41

    Article  CAS  Google Scholar 

  66. Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster Andrew LH, Wyatt MA, Magarvey NA (2015) Nucleic Acids Res 43:9645–9662

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Holt PD, Reid RR, Lewis BL, Luther GW, Butler A (2005) Inorg Chem 44:7671–7677

    Article  CAS  Google Scholar 

  68. Zhang G, Amin SA, Küpper FC, Holt PD, Carrano CJ, Butler A (2009) Inorg Chem 48:11466–11473

    Article  CAS  Google Scholar 

  69. Butler A, Theisen RM (2010) Coord Chem Rev 254:288–296

    Article  CAS  Google Scholar 

  70. Fry HS, Gerwe EG (1928) Ind Eng Chem 20:1392–1394

    Article  CAS  Google Scholar 

  71. Abrahamson HB, Rezvani AB, Brushmiller JG (1994) Inorg Chim Acta 226:117–127

    Article  CAS  Google Scholar 

  72. Shweky I, Bino A, Goldberg DP, Lippard SJ (1994) Inorg Chem 33:5161–5162

    Article  CAS  Google Scholar 

  73. Küpper FC, Carrano CJ, Kuhn J-U, Butler A (2006) Inorg Chem 45:6028–6033

    Article  Google Scholar 

  74. Abergel RJ, Zawadzka AM, Raymond KN (2008) J Am Chem Soc 130:2124–2125

    Article  CAS  Google Scholar 

  75. Hickford SJH, Küpper FC, Zhang G, Carrano CJ, Blunt JW, Butler A (2004) J Nat Prod 67:1897–1899

    Article  CAS  Google Scholar 

  76. Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) J Biol Inorg Chem 11:633–641

    Article  CAS  Google Scholar 

  77. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Nature 413:409–413

    Article  CAS  Google Scholar 

  78. Sayre H, Milos K, Goldcamp MJ, Schroll CA, Krause JA, Baldwin MJ (2010) Inorg Chem 49:4433–4439

    Article  CAS  Google Scholar 

  79. Grabo JE, Chrisman MA, Webb LM, Baldwin MJ (2014) Inorg Chem 53:5781–5787

    Article  CAS  Google Scholar 

  80. Vernia JE, Warmin MR, Krause JA, Tierney DL, Baldwin MJ (2017) Inorg Chem 56:13029–13034

    Article  CAS  Google Scholar 

  81. Glebov EM, Pozdnyakov IP, Grivin VP, Plyusnin VF, Zhang X, Wu F, Deng N (2011) Photochem Photobiol Sci 10:425–430

    Article  CAS  Google Scholar 

  82. Grabo JE, Trotta SM, Baldwin MJ (2017) Inorg Chem Commun 84:204–206

    Article  CAS  Google Scholar 

  83. Barbeau K (2006) Photochem Photobiol 82:1505–1516

    Article  CAS  Google Scholar 

  84. Barbeau K, Rue EL, Trick CG, Bruland KW, Butler A (2003) Limnol Oceanogr 48:1069–1078

    Article  CAS  Google Scholar 

  85. O’Sullivan DW, Hanson AK, Miller WL, Kester DR (1991) Limnol Oceanogr 36:1727–1741

    Article  Google Scholar 

  86. Johnson KS, Coale KH, Elrod VA, Tindale NW (1994) Mar Chem 46:319–334

    Article  CAS  Google Scholar 

  87. Waite TD, Szymczak R, Espey QI, Furnas MJ (1995) Mar Chem 50:79–91

    Article  CAS  Google Scholar 

  88. Gledhill M, van den Berg CMG (1994) Mar Chem 47:41–54

    Article  CAS  Google Scholar 

  89. Rue EL, Bruland KW (1995) Mar Chem 50:117–138

    Article  CAS  Google Scholar 

  90. Gärdes A, Triana C, Amin SA, Green DH, Romano A, Trimble L, Carrano CJ (2013) Biometals 26:507–516

    Article  Google Scholar 

  91. Zawadzka AM, Abergel RJ, Nichiporuk R, Andersen UN, Raymond KN (2009) Biochemistry 48:3645–3657

    Article  CAS  Google Scholar 

  92. Zawadzka AM, Kim Y, Maltseva N, Nichiporuk R, Fan Y, Joachimiak A, Raymond KN (2009) Proc Natl Acad Sci USA 106:21854

    Article  CAS  Google Scholar 

  93. Anderson MA, Morel FMM (1982) Limnol Oceanogr 27:789–813

    Article  CAS  Google Scholar 

  94. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Proc Natl Acad Sci USA 106:17071–17076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from NSF CHE-1710761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Butler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardy, C.D., Butler, A. β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity. J Biol Inorg Chem 23, 957–967 (2018). https://doi.org/10.1007/s00775-018-1584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1584-2

Keywords

Navigation