Skip to main content
Log in

Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The genome of Pseudomonas thivervalensis LMG 21626T has been sequenced and a genomic, genetic and structural analysis of the siderophore mediated iron acquisition was undertaken. Pseudomonas thivervalensis produces two structurally new siderophores, pyoverdine PYOthi which is typical for P. thivervalensis strains and a closely related strain, and the lipopeptidic siderophore histicorrugatin which is also detected in P. lini. Histicorrugatin consists out of an eight amino acid long peptide which is linked to octanoic acid. It is structurally related to the siderophores corrugatin and ornicorrugatin. Analysis of the proteome for TonB-dependent receptors identified 25 candidates. Comparison of the TonB-dependent receptors of P. thivervalensis with the 17 receptors of its phylogenetic neighbor, P. brassicacearum subsp. brassicacearum NFM 421, showed that NFM 421 shares the same set of receptors with LMG 21626T, including the histicorrugatin receptor. An exception was found for their cognate pyoverdine receptor which can be explained by the observation that both strains produce structurally different pyoverdines. Mass analysis showed that NFM 421 did not produce histicorrugatin, but the analogue ornicorrugatin. Growth stimulation assays with a variety of structurally distinct pyoverdines produced by other Pseudomonas species demonstrated that LMG 21626T and NFM 421 are able to utilize almost the same set of pyoverdines. Strain NFM 421 is able utilize two additional pyoverdines, pyoverdine of P. fluorescens Pf0–1 and P. citronellolis LMG 18378T, these pyoverdines are probably taken up by the FpvA receptor of NFM 421.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achouak W, Sutra L, Heulin T, Meyer J-M, Fromin N, Degraeve S, Christen R, Gardan L (2000) Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 50:9–18

    Article  CAS  PubMed  Google Scholar 

  • Barelmann I, Fernandez DU, Budzikiewicz H, Meyer JM (2003) The pyoverdine from Pseudomonas chlororaphis D-TR133 showing mutual acceptance with the pyoverdine of Pseudomonas fluorescens CHA0. BioMetals 16:263–270

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathol 97:239–243

    Article  Google Scholar 

  • Braun V (1997) Avoidance of iron toxicity through regulation of bacterial iron transport. Biol Chem 378:779–786

    CAS  PubMed  Google Scholar 

  • Briskot G, Taraz K, Budzikiewicz H (1989) Pyoverdine-type siderophores from Pseudomonas aeruginosa. Liebigs Ann Chem 1989:375–384

    Article  Google Scholar 

  • Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu T-YS, Schadt CW, Doktycz MJ, Pelletier DA (2012) Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoids. J Bacteriol 194:5991–5993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch 52:713–720

    CAS  Google Scholar 

  • Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Prog Chem Org Nat Prod 87:81–237

    Article  CAS  Google Scholar 

  • Budzikiewicz H, Schröder H, Taraz K (1992) Zur Biogenese der Pseudomonas-siderophore: der Nachweis analoger Strukturen eines Pyoverdin-Desferribactin-Paares. Z Naturforsch C 47:26–32

    CAS  PubMed  Google Scholar 

  • Budzikiewicz H, Schäfer M, Fernández DU, Matthijs S, Cornelis P (2007) Characterization of the chromophore of pyoverdins and related siderophores by electrospray tandem mass spectrometry. Biometals 20:135–144

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, de Bruijn I, van der Voort M, Loper JE, Raaijmakers JM (2013) The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep 5:608–619

    Article  PubMed  Google Scholar 

  • Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep 1:256–262

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Plant Innate Immunity 51:223–281

    Google Scholar 

  • Delorme S, Lemanceau P, Christen R, Corberand T, Meyer JM, Gardan L (2002) Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol 52:513–523

    Article  CAS  PubMed  Google Scholar 

  • Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duijff BJ, Recorbet G, Bakker PAHM, Loper JE, Lemanceau P (1999) Microbial antagonism at the root level is involved in the suppression of fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathol 89:1073–1079

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes, characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res 17:7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández DU, Fuchs R, Taraz K, Budzikiewicz H, Munsch P, Meyer J-M (2001) Structure of a pyoverdine produced by a Pseudomonas tolaasii-like isolate. Biometals 14:81–84

    Article  PubMed  Google Scholar 

  • Fuchs R, Budzikiewicz H (2001) Rearrangement reactions in the electrospray ionization mass spectra of pyoverdins. Int J Mass Spectrom 201(211):603–612

    Article  Google Scholar 

  • Galet J, Deveau A, Hôtel L, Frey-Klett P, Leblond P, Aigle B (2015) Pseudomonas fluorescens pirates both ferrioxamine and ferri-coelichelin siderophores from Streptomyces ambofaciens. Appl Environ Microbiol 81:3132–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser I, Müller H, Berg G (2009) Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol Ecol 70:142–150

    Article  CAS  PubMed  Google Scholar 

  • Hartney SL, Mazurier S, Kidarsa TA, Quecine MC, Lemanceau P, Loper JE (2011) TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals 24:193–213

    Article  CAS  PubMed  Google Scholar 

  • Höfte M, Seong KY, Jurkevitch E, Verstraete W (1991) Pyoverdine production by the plant growth beneficial Pseudomonas strain 7NSK2: ecological significance in soil. Plant Soil 130:249–257

    Article  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol 58:119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish Pseudomonas fluorescens. Phytopathology 85:149–155

    Article  Google Scholar 

  • Lemanceau P, Expert D, Gaymard F, Bakker P, Briat JF (2009) Role of iron in plant-microbe interactions. Plant Innate Immunity 51:491–549

    CAS  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not results in common growth responses. PLoS One 3(7):e2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthijs S, Baysse C, Koedam N, Abbaspour Tehrani K, Verheyden L, Budzikiewicz H, Schäfer M, Hoorelbeke B, Meyer J-M, De Greve H, Cornelis P (2004) The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384

    Article  CAS  PubMed  Google Scholar 

  • Matthijs S, Abbaspour Tehrani K, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  CAS  PubMed  Google Scholar 

  • Matthijs S, Budzikiewicz H, Schäfer M, Wathelet B, Cornelis P (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch C 63:8–12

    Article  CAS  PubMed  Google Scholar 

  • Matthijs S, Laus G, Meyer JM, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H, Cornelis P (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila. Biometals 22:951–964

    Article  CAS  PubMed  Google Scholar 

  • Matthijs S, Coorevits A, Gebrekidan TT, Tricot C, Vander Wauven C, Pirnay J-P, De Vos P, Cornelis P (2013) Evaluation of the oprI and oprL genes as molecular markers for the genus Pseudomonas and their use to study the biodiversity of a small Belgian River. Res Microbiol 164:254–261

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathol 84:39–146

    Article  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in the biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer J-M, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    Article  CAS  Google Scholar 

  • Meyer J-M, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68:2745–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer J-M, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271

    Article  CAS  PubMed  Google Scholar 

  • Moon CD, Zhang XX, Matthijs S, Schäfer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulet M, Bennasar A, Lalucat J, García-Valdés E (2009) An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cellul Prob 23:140–147

    Article  CAS  Google Scholar 

  • Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530

    CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P, Thonart P, Gwose I, Fernandez DU, Schäfer M, Budzikiewicz H (2001) The pyoverdin of Pseudomonas fluorescens BTP2, a novel structural type. Tetrahedron Lett 42:5849–5851

    Article  CAS  Google Scholar 

  • Poole K, Young L, Neshat S (1990) Enterobactin-mediated iron transport in Pseudomonas aeruginosa. J Bacteriol 172:6991–6996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Van Der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    Article  CAS  Google Scholar 

  • Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVM). Nucleic Acids Res 33:5799–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D (1998) Corrugatin, a lipopeptide from Pseudomonas corrugata. Z Naturforsch C 53:295–304

    CAS  Google Scholar 

  • Schlegel K, Fuchs R, Schäfer M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2001) The pyoverdins of Pseudomonas sp. 96-312 and 96-318. Z Naturforsch C 56:680–686

    Article  CAS  PubMed  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Singh GM, Fortin PD, Koglin A, Walsh CT (2008) Beta-Hydroxylation of the aspartyl residue in the phytotoxin syringomycin E: characterization of two candidate hydroxylases AspH and SyrP in Pseudomonas syringae. Biochemistry 47:11310–11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Fuchs R, Schmickler H, Schlegel K, Budzikiewicz H, Siddiqui BS, Geoffroy V, Meyer JM (2000) A pyoverdine from Pseudomonas sp. CFML 95-275. Z Naturforsch C 55:857–865

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum like-lihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefèvre JF (1993) Structure elucidation of a pyoverdin produced by Pseudomonas aeruginosa ATCC 27853. J Prakt Chem 335:83–87

    Article  CAS  Google Scholar 

  • Uría-Fernández D, Geoffroy V, Schäfer M, Meyer JM, Budzikiewicz H (2003) Structure revision of pyoverdines produced by plant-growth promoting and plant deleterious Pseudomonas species. Monatsh Chem 134:1421–1431

    Article  Google Scholar 

  • Van Der Voort M, Meijer HJ, Schmidt Y, Watrous J, Dekkers E, Mendes R, Dorrestein PC, Gross H, Raaijmakers JM (2015) Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp SH-C52 for antimicrobial compounds. Front Microbiol 6:693

    Google Scholar 

  • Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194

    Article  CAS  PubMed  Google Scholar 

  • Voisard C, Bull C, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: O’Gara F, Dowling D, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, pp 67–89

    Chapter  Google Scholar 

  • Yamamoto S, Ksai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Ballet S, Hildebrand F, Laus G, Guillemyn K, Raes J, Matthijs S, Martins J, Cornelis P (2013) A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. Biometals 26:561–575

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Matthijs S, Bodilis J, Hildebrand H, Raes J, Cornelis P (2014a) Analysis of the draft genome of Pseudomonas fluorescens ATCC 17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines. Biometals 27:633–644

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, Berendsen R, Cornelis P (2014b) Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS One 9(11):e110038

    Article  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Pelletier Dale, Baldwin Ian-Thomas and Gasser Ilona for generous gift of strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Matthijs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthijs, S., Brandt, N., Ongena, M. et al. Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis . Biometals 29, 467–485 (2016). https://doi.org/10.1007/s10534-016-9929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9929-1

Keywords

Navigation