Skip to main content

Advertisement

Log in

Detection of photoactive siderophore biosynthetic genes in the marine environment

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their “biochemical potential” and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the “biochemical potential” for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009a) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci USA 106:17071–17076

    Article  CAS  PubMed  Google Scholar 

  • Amin SA, Green DH, Küpper FC, Carrano CJ (2009b) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48:11451–11458

    Article  CAS  PubMed  Google Scholar 

  • Bach HJ, Tomanova J, Schloter M, Munch JC (2002) Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods 49:235–245

    Article  CAS  PubMed  Google Scholar 

  • Barbeau K (2006) Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochem Photobiol 82:1505–1516

    CAS  PubMed  Google Scholar 

  • Barbeau K, Kujawinski EB, Moffett JW (2001a) Remineralization and recycling of iron, thorium and organic carbon by heterotrophic marine protists in culture. Aquat Microb Ecol 24:69–81

    Article  Google Scholar 

  • Barbeau K, Rue EL, Bruland KW, Butler A (2001b) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413

    Article  CAS  PubMed  Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  CAS  PubMed  Google Scholar 

  • Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:205–215

    Article  CAS  PubMed  Google Scholar 

  • Boye M, Nishioka J, Croot PL, Laan P, Timmermans KR, de Baar HJW (2005) Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271

    Article  CAS  Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555–1577

    Article  CAS  Google Scholar 

  • Buck KN, Selph KE, Barbeau KA (2010) Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Mar Chem 122:148–159

    Article  CAS  Google Scholar 

  • Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F et al (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Article  CAS  PubMed  Google Scholar 

  • D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S et al (2010) Geneious Pro v5.1

  • Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54

    Article  CAS  Google Scholar 

  • Gledhill M, McCormack P, Ussher S, Achterberg EP, Mantoura RFC, Worsfold PJ (2004) Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar Chem 88:75–83

    Article  CAS  Google Scholar 

  • Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hopkinson BM, Barbeau KA (2012) Iron transporters in marine prokaryotic genomes and metagenomes. Environ Microbiol 14:114–128

    Article  CAS  PubMed  Google Scholar 

  • Ibisanmi E, Sander SG, Boyd PW, Bowie AR, Hunter KA (2011) Vertical distributions of iron-(III) complexing ligands in the Southern Ocean. Deep Sea Res II 58:2113–2125

    Article  CAS  Google Scholar 

  • Johnson KS, Coale KH, Elrod VA, Tindale NW (1994) Iron photochemistry in seawater from the equatorial Pacific. Mar Chem 46:319–334

    Article  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Kranzler C, Lis H, Shaked Y, Keren N (2011) The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ Microbiol 13:2990–2999

    Article  CAS  PubMed  Google Scholar 

  • Kupferman SL, Becker GA, Simmons WF, Schauer U, Marietta MG, Nies H (1986) An intense cold core eddy in the North-East Atlantic. Nature 319:474–477

    Article  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb 71:8228–8235

    Article  CAS  Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. Bmc Bioinformatics 7:371

    Article  PubMed  Google Scholar 

  • Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG (2009) A single regulatory gene is sufficient to alter bacterial host range. Nature 458:215–218

    Article  CAS  PubMed  Google Scholar 

  • Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S, Thompson A, Wolff GA, Worsfold PJ, Achterberg EP (2008) Hydroxamate siderophores: occurrence and Importance in the Atlantic Ocean. Environ Sci Technol 42:8675–8680

    Article  CAS  PubMed  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Article  CAS  PubMed  Google Scholar 

  • Mohamed KN, Steigenberger S, Nielsdottir MC, Gledhill M, Achterberg EP (2011) Dissolved iron(III) speciation in the high latitude North Atlantic Ocean. Deep Sea Res I 58:1049–1059

    Article  CAS  Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  CAS  Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 42:901–910

    Article  CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K et al (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  CAS  PubMed  Google Scholar 

  • Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258

    Article  CAS  Google Scholar 

  • Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1–11

    Article  CAS  Google Scholar 

  • Velasquez I, Nunn BL, Ibisanmi E, Goodlett DR, Hunter KA, Sander SG (2011) Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the South Eastern Coast of New Zealand. Mar Chem 126:97–107

    Article  CAS  Google Scholar 

  • Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63

    Article  Google Scholar 

  • Winkelmann G, Carrano C (1997) Transition metals in microbial metabolism. Harwood, Amsterdam

    Google Scholar 

  • Wu J, Luther GW (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50:159–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NOAA Grants #NA04OAR4170038 and NA08OAR4170669, California Sea Grant College Program Project numbers R/CZ-198 and R/CONT-205. A.N.R. was supported at SDSU by National Institutes of Health, MBRS grant #2R25GM058906. The authors would like to thank the British Oceanographic Data Centre (BODC) for providing CTD data. S.A.A. would like to thank colleagues at SAMS, Frithjof Küpper for providing space on the ship, Toby Sherwin for leading the scientific team and coordinating CTD sampling, Estelle Dumont for calibrating the CTD data, Andrew Mogg and Anna Macey for assistance on the ship, Debra Brennan for assisting with nucleic acid isolations and Sebastian Steigenberger for providing iron measurements. Finally, A.G. thanks Edward Ruby for providing Vibrio fisherii MJ11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Carrano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gärdes, A., Triana, C., Amin, S.A. et al. Detection of photoactive siderophore biosynthetic genes in the marine environment. Biometals 26, 507–516 (2013). https://doi.org/10.1007/s10534-013-9635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9635-1

Keywords

Navigation