Skip to main content
Log in

The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

General knowledge of dioxygen-activating mononuclear non-heme iron(II) enzymes containing a 2-His-1-carboxylate facial triad has significantly expanded in the last few years, due in large part to the extensive library of crystal structures that is now available. The common structural motif utilized by this enzyme superfamily acts as a platform upon which a wide assortment of substrate transformations are catalyzed. The facial triad binds a divalent metal ion at the active site, which leaves the opposite face of the octahedron available to coordinate a variety of exogenous ligands. The binding of substrate activates the metal center for attack by dioxygen, which is subsequently converted to a high-valent iron intermediate, a formidable oxidizing species. Herein, we summarize crystallographic and mechanistic features of this metalloenzyme superfamily, which has enabled the proposal of a common but flexible pathway for dioxygen activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A notable exception to this generalization is the case of DAOCS in which α-KG and penicillin were found in recent structures of respective binary complexes to bind in overlapping regions of the active site; it would thus appear that a ternary DAOCS–α-KG–penicillin complex could not form [36].

Abbreviations

α-KG:

α-Ketoglutarate

2,3-CTD:

Catechol 2,3-dioxygenase

4,5-PCD:

Protocatechuate 4,5-dioxygenase

A1:

Deoxyguanidinoproclavaminate

ACCO:

1-Aminocyclopropane-1-carboxylic acid oxidase

ACV:

δ-(L-α-Aminoadipoyl)-L-cysteinyl-D-valine

ANS:

Anthocyanidin synthase

AtsK:

Alkylsulfatase

BH4:

6(R)-L-erythro-5,6,7,8-Tetrahydrobiopterin

BphC:

2,3-Dihydroxybiphenyl 1,2-dioxygenase

CarC:

Carbapenem synthase

CAS:

Clavaminate synthase

DAOCS:

Deacetoxycephalosporin C synthase

DFT:

Density functional theory

DHBD:

Synonymous with BphC

DHBP:

2,3-Dihydroxybiphenyl

EXAFS:

Extended X-ray absorption fine structure

FIH-1:

Factor-inhibiting hypoxia-inducible factor-1

HGO:

Homogentisate 1,2-dioxygenase

HPCD:

Homoprotocatechuate 2,3-dioxygenase

HPPD:

4-Hydroxyphenylpyruvate dioxygenase

IPNS:

Isopenicillin N synthase

LigAB:

Synonymous with 4,5-PCD

MCD:

Magnetic circular dichroism

MndD:

MnII-dependent HPCD

MPC:

Metapyrocatechase (synonymous with 2,3-CTD)

NDO:

Naphthalene 1,2-dioxygenase

PCV:

Proclavaminate

PheOH:

Phenylalanine hydroxylase

TauD:

Taurine/α-KG dioxygenase

THA:

3-(2-Thienyl)-L-alanine

TrpOH:

Tryptophan hydroxylase

TyrOH:

Tyrosine hydroxylase

References

  1. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–349

    Article  CAS  PubMed  Google Scholar 

  2. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  CAS  PubMed  Google Scholar 

  3. Solomon EI, Decker A, Lehnert N (2003) Proc Natl Acad Sci USA 100:3589–3594

    Google Scholar 

  4. Bugg TDH (2003) Tetrahedron 59:7075–7101

    Google Scholar 

  5. Wackett LP (2002) Enzyme Microb Tech 31:577–587

    Google Scholar 

  6. Vaillancourt FH, Bolin JT, Eltis LD (2004) In: Ramos J-L (ed) Pseudomonas. Kluwer/Plenum, New York, pp 359–395

  7. Fitzpatrick PF (2003) Biochemistry 42:14083–14091

    Google Scholar 

  8. Hausinger RP (2004) Crit Rev Biochem Mol Biol 39:21–68

    Google Scholar 

  9. Schofield CJ, Zhang Z (1999) Curr Opin Struct Biol 9:722–731

    Google Scholar 

  10. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887

    Article  CAS  PubMed  Google Scholar 

  11. Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT (1995) Science 270:976–980

    Google Scholar 

  12. Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y (1996) J Mol Biol 255:735–752

    Google Scholar 

  13. Roach PL, Clifton IJ, Fülöp V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Nature 375:700–704

    Article  CAS  PubMed  Google Scholar 

  14. Roach PL, Clifton IJ, Hensgens CMH, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Nature 387:827–830

    Google Scholar 

  15. Valegård K, van Scheltinga ACT, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee H-J, Baldwin JE, Schofield CJ, Hajdu J, Andersson I (1998) Nature 394:805–809

    Google Scholar 

  16. Zhang Z, Ren J, Stammers DK, Baldwin JE, Harlos K, Schofield CJ (2000) Nat Struct Biol 7:127–133

    Google Scholar 

  17. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586

    Article  CAS  PubMed  Google Scholar 

  18. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042

    Article  CAS  PubMed  Google Scholar 

  19. Flatmark T, Stevens RC (1999) Chem Rev 99:2137–2160

    Google Scholar 

  20. Zhang Z, Ren J-s, Clifton IJ, Schofield CJ (2004) Chem Biol 11:1383–1394

    Google Scholar 

  21. Hegg EL, Que L Jr (1997) Eur J Biochem 250:625–629

    Google Scholar 

  22. Que L Jr (2000) Nat Struct Biol 7:182–184

    Google Scholar 

  23. Schofield CJ, Baldwin JE, Byford MF, Clifton I, Hajdu J, Hensgens C, Roach P (1997) Curr Opin Struct Biol 7:857–864

    Google Scholar 

  24. Rocklin AM, Tierney DL, Kofman V, Brunhuber NMW, Hoffman BM, Christoffersen RE, Reich NO, Lipscomb JD, Que L Jr (1999) Proc Natl Acad Sci USA 96:7905–7909

    Google Scholar 

  25. Zhou J, Rocklin AM, Lipscomb JD, Que L Jr, Solomon EI (2002) J Am Chem Soc 124:4602–4609

    Google Scholar 

  26. Rocklin AM, Kato K, Liu H-w, Que L Jr, Lipscomb JD (2004) J Biol Inorg Chem 9:171–182

    Google Scholar 

  27. Liu P, Liu A, Yan F, Wolfe MD, Lipscomb JD, Liu H-w (2003) Biochemistry 42:11577–11586

    Google Scholar 

  28. Liu P, Mehn MP, Yan F, Zhao Z, Que L Jr, Liu H-w (2004) J Am Chem Soc 126:10306–10312

    Google Scholar 

  29. Eltis LD, Bolin JT (1996) J Bacteriol 178:5930–5937

    CAS  PubMed  Google Scholar 

  30. Spence EL, Kawamukai M, Sanvoisin J, Braven H, Bugg TDH (1996) J Bacteriol 178:5249–5256

    CAS  PubMed  Google Scholar 

  31. Jiang H, Parales RE, Lynch NA, Gibson DT (1996) J Bacteriol 178:3133–3139

    Google Scholar 

  32. Prescott AG (1993) J Exp Bot 44:849–861

    Google Scholar 

  33. Borovok I, Landman O, Kreisberg-Zakarin R, Aharonowitz Y, Cohen G (1996) Biochemistry 35:1981–1987

    Google Scholar 

  34. Tan DSH, Sim T-S (1996) J Biol Chem 271:889–894

    Google Scholar 

  35. Kappock TJ, Caradonna JP (1996) Chem Rev 96:2659–2756

    Google Scholar 

  36. Valegård K, van Scheltinga ACT, Dubus A, Ranghino G, Öster LM, Hajdu J, Andersson I (2004) Nat Struct Mol Biol 11:95–101

    Google Scholar 

  37. Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nonaka T, Masai E, Fukuda M, Senda T (2002) J Mol Biol 321:621–636

    Google Scholar 

  38. Zhang Z, Ren J-s, Harlos K, McKinnon CH, Clifton IJ, Schofield CJ (2002) Febs Lett 517:7–12

    Google Scholar 

  39. Deeth RJ, Bugg TDH (2003) J Biol Inorg Chem 8:409–418

    Google Scholar 

  40. Bassan A, Blomberg MRA, Siegbahn PEM (2004) J Biol Inorg Chem 9:439–452

    Article  CAS  PubMed  Google Scholar 

  41. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    Google Scholar 

  42. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Trans 20:3153–3162

    Google Scholar 

  43. Schröder M (1980) Chem Rev 80:187–213

    Google Scholar 

  44. Shing TKM, Tam EKW, Tai VW-F, Chung IHF, Jiang Q (1996) Chem Eur J 2:50–57

    Google Scholar 

  45. Lee DG, Chen T (1989) J Am Chem Soc 111:7534–7538

    Google Scholar 

  46. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  PubMed  Google Scholar 

  47. Proshlyakov DA, Henshaw TF, Monterosso GR, Ryle MJ, Hausinger RP (2004) J Am Chem Soc 126:1022–1023

    Article  CAS  PubMed  Google Scholar 

  48. Riggs-Gelasco PJ, Price JC, Guyer RB, Brehm JH, Barr EW, Bollinger JM Jr, Krebs C (2004) J Am Chem Soc 126:8108–8109

    Google Scholar 

  49. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  PubMed  Google Scholar 

  50. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039

    Article  CAS  PubMed  Google Scholar 

  51. Lim MH, Rohde J-U, Stubna A, Bukowski MR, Costas M, Ho RYN, Münck E, Nam W, Que L Jr (2003) Proc Natl Acad Sci USA 100:3665–3670

    Article  CAS  PubMed  Google Scholar 

  52. Kaizer J, Costas M, Que L Jr (2003) Angew Chem Int Ed 42:3671–3673

    Google Scholar 

  53. Kaizer J, Klinker EJ, Oh NY, Rohde J-U, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L Jr (2004) J Am Chem Soc 126:472–473

    Article  CAS  PubMed  Google Scholar 

  54. Balland V, Charlot M-F, Banse F, Girerd J-J, Mattioli TA, Bill E, Bartoli J-F, Battioni P, Mansuy D (2004) Eur J Inorg Chem 301–308

  55. Rohde J-U, Torelli S, Shan X, Lim MH, Klinker EJ, Kaizer J, Chen K, Nam W, Que L Jr (2004) J Am Chem Soc 126:16750–16761

    Google Scholar 

  56. Decker A, Rohde J-U, Que L Jr, Solomon EI (2004) J Am Chem Soc 126:5378–5379

    Google Scholar 

  57. Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y (1999) Structure 7:953–965

    Article  CAS  PubMed  Google Scholar 

  58. Titus GP, Mueller HA, Burgner J, de Córdoba SR, Peñalva MA, Timm DE (2000) Nat Struct Biol 7:542–546

    Google Scholar 

  59. Serre L, Sailland A, Sy D, Boudec P, Rolland A, Pebay-Peyroula E, Cohen-Addad C (1999) Structure 7:977–988

    Google Scholar 

  60. Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC (1997) Nat Struct Biol 4:578–585

    Google Scholar 

  61. Kobe B, Jennings IG, House CM, Michell BJ, Goodwill KE, Santarsiero BD, Stevens RC, Cotton RGH, Kemp BE (1999) Nat Struct Biol 6:442–448

    Google Scholar 

  62. Erlandsen H, Kim JY, Patch MG, Han A, Volner A, Abu-Omar MM, Stevens RC (2002) J Mol Biol 320:645–661

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Que Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehntop, K.D., Emerson, J.P. & Que, L. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J Biol Inorg Chem 10, 87–93 (2005). https://doi.org/10.1007/s00775-005-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0624-x

Keywords

Navigation