Skip to main content
Log in

Lipid metabolism in pigs fed supplemental conjugated linoleic acid and/or dietary arginine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

We proposed that the combination of conjugated linoleic acid (CLA) and arginine would decrease adiposity by depressing lipid synthesis in liver and adipose tissues of growing pigs. Pigs were allotted to treatments in a 2 × 2 factorial design with two lipids (CLA or canola oil) and two amino acids [l-arginine or l-alanine (isonitrogenous control)]; supplements were provided from 80 to 110 kg body weight (approximately 4 weeks). Treatment groups (n = 4) were: control (2.05% l-alanine plus 1% canola oil); CLA (2.05% l-alanine plus 1% CLA); arginine (1.0% l-arginine plus 1.0% canola oil); arginine plus CLA (1.0% arginine plus 1.0% CLA). Arginine increased backfat thickness (P = 0.07) in the absence or presence of CLA, and arginine supplementation increased subcutaneous and retroperitoneal adipocyte volume, especially in combination with dietary CLA (interaction P = 0.001). Arginine increased palmitate incorporation into total lipids by over 60% in liver (P = 0.07). Dietary CLA increased palmitate incorporation into lipids in longissimus muscle by over 100% (P = 0.01), and CLA increased longissimus muscle lipid by nearly 20%. CLA increased glucose oxidation to CO2 by over 80% in retroperitoneal and subcutaneous adipose tissues (P = 0.04), and doubled palmitate oxidation to CO2 in intestinal duodenal mucosal cells (P = 0.07). Arginine supplementation decreased muscle pH at 45 min postmortem (P = 0.001), indicating elevated early postmortem glycolysis, and CLA and arginine independently increased PGC-1α gene expression in longissimus muscle. CLA but not arginine depressed mTOR gene expression in intestinal duodenal mucosal cells. CLA decreased serum insulin by 50% (P = 0.02) but increased serum triacylglycerols by over 40%. CLA supplementation increased (P ≤ 0.01) total saturated fatty acids in liver and adipose tissue. In conclusion, neither CLA nor arginine depressed tissue lipid synthesis in growing/finishing pigs, and in fact dietary CLA promoted elevated intramuscular lipid and arginine increased carcass adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

CLA:

Conjugated linoleic acid

CPT-1A:

Carnitine palmitoyltransferase 1A

FAS:

Fatty acid synthase

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

PGC-1α:

PPARγ co-activator 1α

PPARα:

Peroxisome proliferator-activated receptor α

RLP:

Remnant lipoprotein

s.c.:

Subcutaneous

r.p.:

Retroperitoneal

SCD:

Stearoyl-CoA desaturase

VLDL:

Very low density lipoprotein

References

  • Adams VL, Gilbert CD, Mersmann HJ et al (2005) Conjugated linoleic acid depresses [3H]-thymidine incorporation into stromal-vascular cells of adipose tissue from postweanling pigs. Adipocytes 1:65–72

    CAS  Google Scholar 

  • Azain MJ, Hausman DB, Sisk MB et al (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130:1548–1554

    PubMed  CAS  Google Scholar 

  • Blankson H, Stakkestad JA, Fagertun H et al (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130:2943–2948

    PubMed  CAS  Google Scholar 

  • Brown JM, Boysen MS, Jensen SS et al (2003) Isomer-specific regulation of metabolism and PPARγ signaling by CLA in human preadipocytes. J Lipid Res 44:1287–1300

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Boysen MS, Chung S et al (2004) Conjugated linoleic acid induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem 279:26735–26747

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Kim YC, Han YB et al (2000) The trans-10, cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. J Nutr 130:1920–1924

    PubMed  CAS  Google Scholar 

  • Choi JS, Koh IU, Jung MH et al (2007) Effects of three different conjugated linoleic acid preparations on insulin signalling, fat oxidation and mitochondrial function in rats fed a high-fat diet. Brit J Nutr 98:264–275

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Brown JM, Sandberg MB et al (2005) Trans-10, cis-12 CLA increases adipocyte lipolysis and alters lipid droplet-associated proteins: role of mTOR and ERK signaling. J Lipid Res 46:885–895

    Article  PubMed  CAS  Google Scholar 

  • Close RN, Schoeller DA, Watras AC et al (2007) Conjugated linoleic acid supplementation alters the 6-mo change in fat oxidation during sleep. Am J Clin Nutr 86:797–804

    PubMed  CAS  Google Scholar 

  • Demaree SR, Gilbert CD, Mersmann HJ et al (2002) Conjugated linoleic acid differentially modifies fatty acid composition in subcellular fractions of muscle and adipose tissue but not adiposity of postweanling pigs. J Nutr 132:3272–3279

    PubMed  CAS  Google Scholar 

  • Dobrzyn A, Ntambi JM (2005) Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obes Rev 6:169–174

    Article  PubMed  CAS  Google Scholar 

  • Dugan MER, Aalhus JL, Jeremiah LE et al (1999) The effects of feeding conjugated linoleic acid on subsequent pork quality. Can J Anim Sci 79:45–51

    Article  CAS  Google Scholar 

  • Evans M, Geigerman C, Curtis L et al (2001) Linoleic acid attenuates the lipid-lowering effect of conjugated linoleic acid in cultures of 3T3-L1 preadipocytes. FASEB J 15:A996

    Google Scholar 

  • Faulconnier Y, Arnal MA, Mirand PP et al (2004) Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained Wistar rat. J Nutr Biochem 15:741–748

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Huerta-Leidenz NO, Cross HR, Savell JW et al (1996) Fatty acid composition of subcutaneous adipose tissue from male calves at different stages of growth. J Anim Sci 74:1256–1264

    PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H et al (2009a) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC et al (2009b) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    PubMed  CAS  Google Scholar 

  • Joo ST, Lee JI, Ha YL et al (2002) Effects of dietary conjugated linoleic acid on fatty acid composition, lipid oxidation, color, and water-holding capacity of pork loin. J Anim Sci 80:108–112

    PubMed  CAS  Google Scholar 

  • Kang K, Liu W, Albright KJ et al (2003) Trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPARγ expression. Biochem Biophys Res Commun 303:795–799

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Johnson GA et al (2010) Dietary supplementation with 0.8% l-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Lira VA, Soltow QA, Long JHD et al (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293:E1062–E1068

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Lin YC, Jiang ZY et al (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95–102

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • May SG, Savell JW, Lunt DK et al (1994) Evidence for preadipocyte proliferation during culture of subcutaneous and intramuscular adipose tissues from Angus and Wagyu crossbred steers. J Anim Sci 72:3110–3117

    PubMed  CAS  Google Scholar 

  • McKnight SL (2010) On getting there from here. Science 330:1338–1339

    Article  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  • Myer RO, Lamkey JW, Walker WR et al (1992) Performance and carcass characteristics of swine when fed diets containing canola oil and added copper to alter the unsaturated–saturated ratio of pork fat. J Anim Sci 70:1417–1423

    PubMed  CAS  Google Scholar 

  • Nall JL, Wu G, Kim KH et al (2009) Dietary supplementation of l-arginine and conjugated linoleic acid reduces retroperitoneal fat mass and increases lean body mass in rats. J Nutr 139:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Storkson JM, Albright KJ et al (1999) Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235–241

    Article  PubMed  CAS  Google Scholar 

  • Smith DR (1998) Animal models: nutrition and lipoprotein metabolism. Curr Opin Lipidol 9:3–6

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Hively TS, Cortese GM et al (2002) Conjugated linoleic acid depresses the delta 9 desaturase index and stearoyl coenzyme A desaturase enzyme activity in porcine subcutaneous adipose tissue. J Anim Sci 80:2110–2115

    PubMed  CAS  Google Scholar 

  • Smith SB, Kawachi H, Choi CB et al (2009) Cellular regulation of bovine intramuscular adipose tissue development and composition. J Anim Sci 87(E. Suppl.):E72–E82

    Google Scholar 

  • St John LC, Young CR, Knabe DA et al (1987) Fatty acid profiles and sensory and carcass traits of tissues from steers and swine fed an elevated monounsaturated fat diet. J Anim Sci 64:1441–1447

    PubMed  CAS  Google Scholar 

  • Tan B, Yin YL, Liu ZQ et al (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin YL, Liu ZQ et al (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  PubMed  CAS  Google Scholar 

  • Tischendorf F, Schone F, Kirchheim U et al (2002) Influence of a conjugated linoleic acid mixture on growth, organ weights, carcass traits and meat quality in growing pigs. J Anim Physiol Anim Nutr (Berl) 86:117–128

    Article  CAS  Google Scholar 

  • Whigham LD, Watras AC, Schoeller DA (2007) Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J Clin Nutr 85:1203–1211

    PubMed  CAS  Google Scholar 

  • Wiegand BR, Sparks JC, Parrish FC et al (2002) Duration of feeding conjugated linoleic acid influences growth performance, carcass traits, and meat quality of finishing barrows. J Anim Sci 80:637–643

    PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S (discussion 96S–97S)

    Google Scholar 

  • Wu GY, Bazer FW, Cudd TA et al (2007) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by National Research Initiative Competitive Grant no. 2008-35206-18762 from the USDA National Institute of Food and Agriculture.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Go, G., Wu, G., Silvey, D.T. et al. Lipid metabolism in pigs fed supplemental conjugated linoleic acid and/or dietary arginine. Amino Acids 43, 1713–1726 (2012). https://doi.org/10.1007/s00726-012-1255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1255-5

Keywords

Navigation