Skip to main content
Log in

On the breakdown of zircon upon “dry” thermal annealing

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zircon samples without and with secondary chemical alteration from diverse sources were subjected to heat treatment at 1400 °C for 96 h. Resulting new phases and textures suggest that decomposition of zircon into component oxides occurred in all experiments to various degrees. The crucible material was found to have a strong influence on the extent of breakdown, especially in the case of altered starting materials. In this study the progressive stages of the breakdown of zircon grains are described. The factors that may govern the decomposition are discussed, including radiation damage, secondary alteration and external reaction conditions (sample container, atmosphere). Alumina crucibles should generally be avoided in dry annealing of zircon, to minimise uncontrolled breakdown into oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansdell KM, Kyser TK (1993) Textural and chemical changes undergone by zircon during the Pb-evaporation technique. Am Mineral 78:36–41

    Google Scholar 

  • Barreiro P, Rey P, Souto A, Guitián F (2009) Porous stabilized zirconia coatings on zircon using volatility diagrams. J Eur Ceram Soc 29:653–659

    Article  Google Scholar 

  • Begg BD, Hess NJ, Weber WJ, Conradson SD, Schweiger MJ, Ewing RC (2000) XAS and XRD study of annealed 238Pu— and 239Pu-substituted zircons (Zr0.92Pu0.08SiO4). J Nucl Mat 278:212–224

    Article  Google Scholar 

  • Butterman WC, Foster WR (1967) Zircon stability and the ZrO2-SiO2 phase diagram. Am Mineral 52:880–885

    Google Scholar 

  • Capitani GC, Leroux H, Doukhan JC, Ríos S, Zhang M, Salje EKH (2000) A TEM investigation of natural metamict zircons: structure and recovery of amorphous domains. Phys Chem Minerals 27:545–556

    Article  Google Scholar 

  • Carrez P, Forterre C, Braga D, Leroux H (2003) Phase separation in metamict zircon under electron irradiation. Nucl Instrum Meth B 211:549–555

    Article  Google Scholar 

  • Chapman HJ, Roddick JC (1994) Kinetics of Pb release during the zircon evaporation technique. Earth Planet Sci Lett 121:601–611

    Article  Google Scholar 

  • Colombo M, Chrosch J (1998) Annealing of natural metamict zircons: II high degree of radiation damage. Radiat Phys Chem 53:563–566

    Article  Google Scholar 

  • Colombo M, Chrosch J, Salje EKH (1999) Annealing metamict zircon: a powder X-ray diffraction study of a highly defective phase. J Am Ceram Soc 82:2711–2716

    Google Scholar 

  • Davis DW (2007) Sub-m.y. age resolution for Precambrian igneous events by thermal extraction (TE-TIMS) Pb dating of zircon: Application to progressive crystallization of the 1849 Ma Sudbury impact melt. Geochim Cosmochim Acta 71:A206

    Google Scholar 

  • Ellsworth S, Navrotsky A, Ewing RC (1994) Energetics of radiation damage in natural zircon (ZrSiO4). Phys Chem Minerals 21:140–149

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineral. Soc. Am., Washington, D.C., pp 387–425

  • Fritsch M, Klemm H, Herrmann M, Schenk B (2006) Corrosion of selected ceramic materials in hot gas environment. J Eur Ceram Soc 26:3557–3565

    Article  Google Scholar 

  • Gardner RA, Buchanan RC (1975) High temperature loss of silica from zircon and refractory silicates. J Electrochem Soc 122:205–211

    Article  Google Scholar 

  • Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Miner 29:420–429

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003a) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Google Scholar 

  • Geisler T, Rashwan AA, Rahn MKW, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003b) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Kaiser A, Lobert M, Telle R (2008) Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc 28:2199–2211

    Article  Google Scholar 

  • Kamaev DN, Archugov SA, Mikhailov GG (2005) Study and thermodynamic analysis of the ZrO2–SiO2 system. Russ J Appl Chem 78:200–203

    Article  Google Scholar 

  • Kim H, McIntyre PC (2002) Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics. J Appl Phys 92:5094–5102

    Article  Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:482–490

    Article  Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petrol 96:63–71

    Article  Google Scholar 

  • Lucovsky G, Rayner GBJ (2000) Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf silicate alloys. Appl Phys Lett 77:2912–2914

    Article  Google Scholar 

  • Lumpkin GR (2001) Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J Nucl Mater 289:136–166

    Article  Google Scholar 

  • Mattinson JM (2005) Zircon U–Pb chemical abrasion (“CA–TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66

    Article  Google Scholar 

  • McLaren AC, Fitz Gerald JD, Williams IS (1994) The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochim Cosmochim Acta 58:993–1005

    Article  Google Scholar 

  • Mitsuhashi T, Ichihara M, Tatsuke U (1974) Characterization and stabilization of metastable tetragonal ZrO2. J Am Ceram Soc 57:97–101

    Article  Google Scholar 

  • Monaghan S, Greer JC, Elliott SD (2005) Thermal decomposition mechanisms of hafnium and zirconium silicates at the atomic scale. J Appl Phys 97:114911

    Article  Google Scholar 

  • Mursic Z, Vogt T, Frey F (1992) High-temperature neutron powder diffraction study of ZrSiO4 up to 1900 K. Acta Crystallogr B 48:584–590

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144

    Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Nasdala L, Hofmeister WG, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A, Valley JW (2008) Zircon M257 — a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostand Geoanal Res 32:247–265

    Article  Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650

    Article  Google Scholar 

  • O’Neill HSC (2006) Free energy of formation of zircon and hafnon. Am Mineral 91:1134–1141

    Article  Google Scholar 

  • Pavlik RS, Holland HJ, Payzant EA (2001) Thermal decomposition of zircon refractories. J Am Ceram Soc 84:2930–2936

    Article  Google Scholar 

  • Peña P, de Aza S (1984) The zircon thermal behavior: effect of impurities. Part 1. J Mater Sci 19:135–142

    Article  Google Scholar 

  • Pérez-Soba C, Villaseca C, González del Tánago J, Nasdala L (2007) The composition of zircon in the peraluminous Hercynian granites of the Spanish Central System batholith. Can Mineral 45:509–527

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Wang WY, Scarratt K, Emmett JL, Breeding CM, Douthit TR (2006) The effects of heat treatment on zircon inclusions in Madagascar sapphires. Gems Gemol 42:134–150

    Google Scholar 

  • Wanthanachaisaeng B, Häger T, Hofmeister W, Nasdala L (2006) Raman- und fluoreszenz-spektroskopische Eigenschaften von Zirkon-Einschlüssen in chrom-haltigen Korunden aus Ilakaka und deren Veränderung durch Hitzebehandlung. Z Dt Gemmol Ges 55:123–136

    Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skar O, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng YF (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39

    Article  Google Scholar 

  • Wirth R (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876

    Article  Google Scholar 

  • Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schluter J, Ewing RC (2000) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys: Condens Mat 12:3131–3148

    Article  Google Scholar 

  • Zhao SK, Huang Y, Wang CA, Huang XX, Guo JK (2003) Mullite formation from reaction sintering of ZrSiO4/α-Al2O3 mixtures. Mater Lett 57:1716–1722

    Article  Google Scholar 

Download references

Acknowledgements

Samples studied in this research were kindly provided by J.M. Hanchar (synthetic zircon), M. Wiedenbeck (91500), W. Hofmeister (M127, M144, M146, M257), and C. Pérez-Soba (87165). Thanks are due to A. Wagner for the excellent sample preparation, and to B. Ullrich for obtaining a BSE image of an annealed La Pedriza zircon. We are grateful to I. Dódony and D.W. Davis for helpful discussions and suggestions. The constructive reviews by J.M. Hanchar and an anonymous expert, and detailed comments by associate editor A. Möller, greatly contributed to the manuscript. Partial funding for this study was provided by the European Commission through contract no. MEXC-CT-2005-024878 and by the Austrian Science Fund (FWF) through grant no. P20028-N10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Váczi.

Additional information

Editorial handling: A. Möller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Váczi, T., Nasdala, L., Wirth, R. et al. On the breakdown of zircon upon “dry” thermal annealing. Miner Petrol 97, 129–138 (2009). https://doi.org/10.1007/s00710-009-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0087-9

Keywords

Navigation