Skip to main content
Log in

Electronic excitation induced phase transformation in Gd2Zr2O7 pyrochlore for extreme condition applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Isometric pyrochlore oxides (A2B2O7) have prodigious structural and physical properties and are used in a variety of applications like electrolytes, sensors, immobilization of radioactive nuclides, and so on. Herein, the electronic excitation-induced disorder engineering in the Gd2Zr2O7 system on irradiation of 100 MeV I7+ ions with the function of fluence has been investigated. X-ray diffraction (XRD) and Raman spectroscopy techniques were performed to probe the electronic excitation-induced phase transformation. Rietveld’s refinement of the pristine Gd2Zr2O7 sample confirmed an ordered pyrochlore phase. XRD studies show that the superstructure reflection disappeared with the enhanced fluence, which indicates pyrochlore to defect fluorite structure phase transformation. Raman spectroscopy results demonstrate that the structural modifications of Gd2Zr2O7 samples depend strongly on the ion fluence and degrees of disorder augmented with enhanced ion fluence. Both, the complementary techniques provide the compatible elucidation of structural modifications induced by the swift heavy ions (100 MeV iodine) and demonstrate that no amorphization was observed in the Gd2Zr2O7 samples even after irradiation at the highest fluence, and establish the capability of these samples for nuclear applications under hostile environment. 

Graphical abstract

Raman spectra recorded on Gd2Zr2O7 sample before and after irradiation with 100 MeV I7+ ions at a fluence of 1.0 × 1014 ions/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Liu, K. Zhang, T. Deng, J. Zeng, B. Luo, H. Zhang, Grain size effects on the aqueous durability of Gd2Zr2O7 ceramics as high-level radioactive wastes matrix and its leaching mechanism. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.01.193

    Article  Google Scholar 

  2. M. Jafar, S.B. Phapale, B.P. Mandal, M. Roy, S.N. Achary, R. Mishra, A.K. Tyagi, Effect of temperature on phase evolution in Gd2Zr2O7: a potential matrix for nuclear waste immobilization. J. Alloys Compd. 867, 159032 (2021). https://doi.org/10.1016/j.jallcom.2021.159032

    Article  Google Scholar 

  3. M. Jafar, S.B. Phapale, B.P. Mandal, R. Mishra, A.K. Tyagi, Preparation and structure of uranium-incorporated Gd2Zr2O7 compounds and their thermodynamic stabilities under oxidizing and reducing conditions. Inorg. Chem. 54, 9447–9457 (2015). https://doi.org/10.1021/acs.inorgchem.5b01300

    Article  Google Scholar 

  4. C.A. Taylor, M.K. Patel, J.A. Aguiar, Y. Zhang, M.L. Crespillo, J. Wen, H. Xue, Y. Wang, W.J. Weber, Bubble formation and lattice parameter changes resulting from He irradiation of defect-fluorite Gd2Zr2O7. Acta Mater. 115, 115–122 (2016). https://doi.org/10.1016/j.actamat.2016.05.045

    Article  ADS  Google Scholar 

  5. F.X. Zhang, M. Lang, R.C. Ewing, Atomic disorder in Gd 2 Zr 2 O 7 pyrochlore. Appl. Phys. Lett. 106, 191902 (2015). https://doi.org/10.1063/1.4921268

    Article  ADS  Google Scholar 

  6. G. Sattonnay, S. Moll, L. Thomé, C. Decorse, C. Legros, P. Simon, J. Jagielski, I. Jozwik, I. Monnet, Phase transformations induced by high electronic excitation in ion-irradiated Gd2(ZrxTi1−x)2O7 pyrochlores. J. Appl. Phys. 108, 103512 (2010). https://doi.org/10.1063/1.3503452

    Article  ADS  Google Scholar 

  7. R. Kumari, P.K. Kulriya, V. Grover, R. Shukla, K. Saravanan, S. Mohapatra, A.K. Tyagi, D.K. Avasthi, Radiation stability of Gd2Zr2O7: effect of stoichiometry and structure. Ceram. Int. 42, 103–109 (2016). https://doi.org/10.1016/j.ceramint.2015.08.007

    Article  Google Scholar 

  8. M.K. Patel, V. Vijayakumar, D.K. Avasthi, S. Kailas, J.C. Pivin, V. Grover, B.P. Mandal, A.K. Tyagi, Effect of swift heavy ion irradiation in pyrochlores. Nucl. Instruments Methods Phys Res. Sect. B Beam Interact. Mater. Atoms. 266, 2898–2901 (2008). https://doi.org/10.1016/j.nimb.2008.03.135

    Article  ADS  Google Scholar 

  9. M.K. Patel, V. Vijayakumar, S. Kailas, D.K. Avasthi, J.C. Pivin, A.K. Tyagi, Structural modifications in pyrochlores caused by ions in the electronic stopping regime. J. Nucl. Mater. 380, 93–98 (2008). https://doi.org/10.1016/j.jnucmat.2008.07.007

    Article  ADS  Google Scholar 

  10. K. Liu, K. Zhang, T. Deng, W. Li, H. Zhang, Comparative study of irradiation effects on nanosized and microsized Gd2Zr2O7 ceramics. Ceram. Int. 46, 16987–16992 (2020). https://doi.org/10.1016/j.ceramint.2020.03.283

    Article  Google Scholar 

  11. M. Lang, F.X. Zhang, R.C. Ewing, J. Lian, C. Trautmann, Z. Wang, Structural modifications of Gd 2Zr 2-xTi xO 7 pyrochlore induced by swift heavy ions: disordering and amorphization. J. Mater. Res. 24, 1322–1334 (2009). https://doi.org/10.1557/jmr.2009.0151

    Article  ADS  Google Scholar 

  12. A. Kumar, P.K. Kulriya, S.K. Sharma, V. Grover, A.K. Tyagi, V.K. Shukla, Structural and compositional effects on the electronic excitation induced phase transformations in Gd2Ti2-yZryO7 pyrochlore. J. Nucl. Mater. (2020). https://doi.org/10.1016/j.jnucmat.2020.152278

    Article  Google Scholar 

  13. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, B.P. Uberuaga, Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6, 217–223 (2007). https://doi.org/10.1038/nmat1842

    Article  ADS  Google Scholar 

  14. A. Panghal, Y. Kumar, P.K. Kulriya, P.M. Shirage, N.L. Singh, Structural assessment and irradiation response of La2Zr2O7 pyrochlore: impact of irradiation temperature and ion fluence. J. Alloys Compd. 862, 158556 (2021). https://doi.org/10.1016/j.jallcom.2020.158556

    Article  Google Scholar 

  15. A.F. Fuentes, S.M. Montemayor, M. Maczka, M. Lang, R.C. Ewing, U. Amador, A critical review of existing criteria for the prediction of pyrochlore formation and stability. Inorg. Chem. 57, 12093–12105 (2018). https://doi.org/10.1021/acs.inorgchem.8b01665

    Article  Google Scholar 

  16. K. Liu, K. Zhang, T. Deng, B. Luo, H. Zhang, Heavy-ion irradiation effects of Gd2Zr2O7 nanocrystalline ceramics as nuclear waste immobilization matrix. J. Nucl. Mater. 538, 152236 (2020). https://doi.org/10.1016/j.jnucmat.2020.152236

    Article  Google Scholar 

  17. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  18. Y. Kumar, A.K. Rana, P. Bhojane, M. Pusty, V. Bagwe, S. Sen, P.M. Shirage, Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater. Res. Express. 2, 105017 (2015). https://doi.org/10.1088/2053-1591/2/10/105017

    Article  ADS  Google Scholar 

  19. Y. Kumar, A. Sharma, M.A. Ahmed, S.S. Mali, C.K. Hong, P.M. Shirage, Morphology-controlled synthesis and enhanced energy product (BH) max of CoFe 2 O 4 nanoparticles. New J. Chem. 42, 15793–15802 (2018). https://doi.org/10.1039/C8NJ02177E

    Article  Google Scholar 

  20. L. Kong, I. Karatchevtseva, D.J. Gregg, M.G. Blackford, R. Holmes, G. Triani, Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. J. Eur. Ceram. Soc. 33, 3273–3285 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.05.011

    Article  Google Scholar 

  21. A. Panghal,  Y. Kumar, P.K. Kulriya, P. M. Shirage, N.L. Singh, Atomic order-disorder engineering in the La2Zr2O7 pyrochlore under low energy ion irradiation. Ceram. Int. 47, 20248–20259 (2021). https://doi.org/10.1016/j.ceramint.2021.04.032

    Article  Google Scholar 

  22. P.K. Kulriya, T. Yao, S.M. Scott, S. Nanda, J. Lian, Influence of grain growth on the structural properties of the nanocrystalline Gd2Ti2O7. J. Nucl. Mater. 487, 373–379 (2017). https://doi.org/10.1016/j.jnucmat.2017.02.032

    Article  ADS  Google Scholar 

  23. A. Panghal, P. K. Kulriya, Y. Kumar, F. Singh, N.L. Singh, Investigations of atomic disorder and grain growth kinetics in polycrystalline La2Zr2O7. Appl. Phys. A 125, 428 (2019).  https://doi.org/10.1007/s00339-019-2720-8

    Article  Google Scholar 

  24. S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, K.V. Govidan Kutty, Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. J. Mater. Res. 14, 4470–4473 (1999). https://doi.org/10.1557/JMR.1999.0606

    Article  ADS  Google Scholar 

  25. G. Sattonnay, L. Thomé, N. Sellami, I. Monnet, C. Grygiel, C. Legros, R. Tetot, Phase transformations in pyrochlores irradiated with swift heavy ions: Influence of composition and chemical bonding. Acta Phys. Pol. A. 123, 862–866 (2013). https://doi.org/10.12693/APhysPolA.123.862

    Article  ADS  Google Scholar 

  26. J.F. Gibbons, Ion implantation in semiconductors—part II: damage production and annealing. Proc. IEEE. 60, 1062–1096 (1972). https://doi.org/10.1109/PROC.1972.8854

    Article  Google Scholar 

  27. W.J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instruments Methods Phys Res. Sect. B Beam Interact. Mater. Atoms. 166, 98–106 (2000). https://doi.org/10.1016/S0168-583X(99)00643-6

    Article  ADS  Google Scholar 

  28. Q. Qing, X. Shu, D. Shao, H. Zhang, F. Chi, X. Lu, Irradiation response of Nd2Zr2O7 under heavy ions irradiation. J. Eur. Ceram. Soc. 38, 2068–2073 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.050

    Article  Google Scholar 

  29. D. Michel, M.P.Y. Jorba, R. Collongues, Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures. J. Raman Spectrosc. 5, 163–180 (1976). https://doi.org/10.1002/jrs.1250050208

    Article  ADS  Google Scholar 

  30. M. Glerup, O.F. Nielsen, F.W. Poulsen, The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by raman spectroscopy and defect chemistry modeling. J. Solid State Chem. 160, 25–32 (2001). https://doi.org/10.1006/jssc.2000.9142

    Article  ADS  Google Scholar 

  31. B.P. Mandal, N. Garg, S.M. Sharma, A.K. Tyagi, Solubility of ThO2 in Gd2Zr2O7 pyrochlore: XRD, SEM and Raman spectroscopic studies. J. Nucl. Mater. 392, 95–99 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.050

    Article  ADS  Google Scholar 

  32. B.E. Scheetz, W.B. White, Characterization of anion disorder in zirconate A 2 B 2 O 7 compounds by Raman spectroscopy. J. Am. Ceram. Soc. 62, 468–470 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19107.x

    Article  Google Scholar 

  33. H.C. Gupta, J. Singh, S. Kumar, N.R. Karandeep, A lattice dynamical investigation of the Raman and the infrared frequencies of the Dy2Ti2O7 pyrochlore spin ice compound. J. Mol. Struct. 937, 136–138 (2009). https://doi.org/10.1016/j.molstruc.2009.08.027

    Article  ADS  Google Scholar 

  34. S. Brown, H.C. Gupta, J.A. Alonso, M.J. Martinez-Lope, Vibrational spectra and force field calculation of A2Mn2O7 (A = Y, Dy, Er, Yb) pyrochlores. J. Raman Spectrosc. 34, 240–243 (2003). https://doi.org/10.1002/jrs.982

    Article  ADS  Google Scholar 

  35. L. Zhou, Z. Huang, J. Qi, Z. Feng, D. Wu, W. Zhang, X. Yu, Y. Guan, X. Chen, L. Xie, K. Sun, T. Lu, Thermal-driven fluorite–pyrochlore–fluorite phase transitions of Gd2Zr2O7 ceramics probed in large range of sintering temperature. Metall. Mater. Trans. A. 47, 623–630 (2016). https://doi.org/10.1007/s11661-015-3234-4

    Article  Google Scholar 

  36. Y.H. Lee, H.S. Sheu, J.P. Deng, H.-C.I. Kao, Preparation and fluorite–pyrochlore phase transformation in Gd2Zr2O7. J. Alloys Compd. 487, 595–598 (2009). https://doi.org/10.1016/j.jallcom.2009.08.021

    Article  Google Scholar 

  37. S.X. Zhang, J. Liu, H. Xie, L.J. Xu, P.P. Hu, J. Zeng, Z.Z. Li, L. Liu, W.S. Ai, P.F. Zhai, Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses. Chinese Phys. B. (2019). https://doi.org/10.1088/1674-1056/ab43bf

    Article  Google Scholar 

  38. N.J. Hess, B.D. Begg, S.D. Conradson, D.E. McCready, P.L. Gassman, W.J. Weber, Spectroscopic investigations of the structural phase transition in Gd 2 (Ti 1 - y Zr y ) 2 O 7 pyrochlores. J. Phys. Chem. B. 106, 4663–4677 (2002). https://doi.org/10.1021/jp014285t

    Article  Google Scholar 

  39. C. Wan, Z. Qu, A. Du, W. Pan, Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7. Acta Mater. 57, 4782–4789 (2009). https://doi.org/10.1016/j.actamat.2009.06.040

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge IUAC New Delhi for providing the 15 UD pelletron accelerator facility. The author A. P. is thankful to Dr. P. K. Kulriya for fruitful discussion during irradiation experiments. Author, Asha Panghal is also thankful to IUAC New Delhi for (grant no.-60322) providing the financial assistance. The author, Asha Panghal is thankful to Dr. Parasharam M. Shirage, IIT Indore for characterization facilities. Asha Panghal also acknowledges CSIR, Govt. of India for granting the direct senior research fellowship (Direct SRF- 09/114(0222)/19-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yogendra Kumar or N. L. Singh.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 796 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panghal, A., Kumar, Y. & Singh, N.L. Electronic excitation induced phase transformation in Gd2Zr2O7 pyrochlore for extreme condition applications. Appl. Phys. A 128, 453 (2022). https://doi.org/10.1007/s00339-022-05594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05594-x

Keywords

Navigation