Skip to main content
Log in

Silicon alleviates simulated acid rain stress of Oryza sativa L. seedlings by adjusting physiology activity and mineral nutrients

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Silicon (Si) has been a modulator in plants under abiotic stresses, such as acid rain. To understand how silicon made an effect on rice (Oryza sativa L.) exposed to simulated acid rain (SAR) stress, the growth, physiologic activity, and mineral nutrient content in leaves of rice were investigated. The results showed that combined treatments with Si (1.0, 2.0, or 4.0 mM) and SAR (pH 4.0, 3.0, or 2.0) obviously improved the rice growth compared with the single treatment with SAR. Incorporation of Si into SAR treatment decreased malondialdehyde (MDA) content; increased soluble protein and proline contents; promoted CAT, POD, SOD, and APX activity; and maintained the K, Ca, Mg, Fe, Zn, Cu content balance in leaves of rice seedlings under SAR stress. The moderate concentration of Si (2.0 mM) was better than the low and high concentration of Si (1.0 and 4.0 mM). Therefore, application of Si could be a better strategy for maintaining the crop productivity in acid rain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi T, Poornima P, Kannadasan T, Abbasi SA (2013) Acid rain: past, present, and future. International Journal of Environmental Engineering 97:229–272

    Article  Google Scholar 

  • Azevedo MM, Carvalho A, Pascoal C, Rodrigues F, Cássioo F (2007) Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Sci Total Environ 377:233–243

    Article  CAS  PubMed  Google Scholar 

  • Bai LP, Sui FG, Ge TD, Sun ZH, Lu YY, Zhou GS (2006) Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 16:326–332

    Article  CAS  Google Scholar 

  • Bashkin V, Radojevic M (2003) Acid rain and its mitigation in Asia. The International Journal of Environmental Studies 60:205–214

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline of water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environmental Science & Technology 42:7885–7890

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Aanalytical Biochemistry 72:248–254

    Article  CAS  Google Scholar 

  • Bäck J, Huttunen S, Turunen M, Lamppu J (1995) Effects of acid rain on growth and nutrient concentrations in scots pine and Norway spruce seedlings grown in a nutrient-rich soil. Environ Pollut 89:177–187

    Article  PubMed  Google Scholar 

  • Chen W, Yao XQ, Cai KZ, Chen JN (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Rresearch 142:67–76

    Article  CAS  Google Scholar 

  • Dias APL, Dafré M, Rinaldi MCS, Domingos M (2011) How the redoxstate of tobacco ‘Bel-W3’ is modified in response to ozone and other environmental factors in a sub-tropical area? Environ Pollut 159:458–465

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1999) Silicon. Annual Review Plant Physiology and Plant Molecular Biology 50:641–664

    Article  CAS  Google Scholar 

  • Esposito JBN, Esposito BP, Azevedo RA, Cruz LS, Silva LC, Souza SR (2015) Protective effect of Mn (III)–desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max “Sambaiba”. Environ Sci Pollut Res 22:5315–5324

    Article  CAS  Google Scholar 

  • Gabara B, Skłodowska M, Wyrwicka A, Glińska S, Gapińska M (2003) Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum mill. Leaves sprayed with acid rain. Plant Sci 164:507–516

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosystems 143:81–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gulen H, Turhan E, Eris A (2006) Changes in peroxidase activities and soluble proteins in strawberry varieties under salt-stress. Acta Physiol Plant 28:109–116

    Article  CAS  Google Scholar 

  • Guntzer F, Catherine KFG, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hu HQ, Wang LH, Zhou Q, Huang XH (2016) Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice. Environ Sci Pollut Res 23:8902–8916

    Article  CAS  Google Scholar 

  • Jin X, Wen X, Xie X, Yu J, Lu ZW (2015) Analysis of historical change of acid rain pollution trend of Nanjing (in Chinese). The Administration and Technique of Environmental Monitoring 27:65–68

    Google Scholar 

  • Jones LHP, Handreck KA (1967) Silica in soils plants and animals. Adv Agron 19:107–149

    Article  CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Khodarahmi S, Haghighi M (2014) Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Arch Agron Soil Sci 60:639–653

    Article  CAS  Google Scholar 

  • Larssen T, Lydersen E, Tang D, He Y, Gao J, Liu H et al (2006) Acid rain in China. Environ Sci Technol 40:418–425

    Article  CAS  PubMed  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang J (2008) A study on effects of acid rain on soil, yield and quality forming of crops in Nanjing (in Chinese). Dissertation. Nanjing University of Information

  • Liang YC, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Hua HX, Zhu YG, Zhang J, Cheng CM, Romheld V (2006) Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol 172:63–72

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Liang CJ, Ge YQ, Su L, Bu JJ (2015) Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain. Environ Sci Pollut Res 22:535–545

    Article  CAS  Google Scholar 

  • Liu EU, Liu CP (2011) Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings. Water Air and Soil Pollution 215:127–135

    Article  CAS  Google Scholar 

  • Liu MH, Yi LT, Yu SQ, Yu F, Yin XM (2015) Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain. Photosynthetica 53:23–28

    Article  CAS  Google Scholar 

  • Luo X, Li J, Zhang P, Zhu ZZ, Li Y (2013) Advances in research on the chemical composition of precipitation and its sources in China (in Chinese). Earth and Environment 41:566–575

    CAS  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Currebt Opinion in Plant Biology 12:250–258

    Article  CAS  Google Scholar 

  • Macaulay BM, Enahoro GE (2015) Effects of simulated acid rain on the morphology, phenology and dry biomass of a local variety of maize (Suwan-1) in southwestern Nigeria. Environ Monit Assess 187:622. doi:10.1007/s10661-015-4844-4

    Article  PubMed  Google Scholar 

  • Menz FC, Seip HM (2004) Acid rain in Europe and the United States: an update. Environ Sci Pol 7:253–265

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Perry CC (2003) Siliciication: the processes by which organisms capture and mineralize silica. Reviews in Mineralogy & Geochemistry 54:291–327

    Article  CAS  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Currebt Opinion in Plant Biology 6:268–272

    Article  CAS  Google Scholar 

  • Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Tengoua FF et al (2015) Importance of silicon and mechanisms of biosilica formation in plants. Biomed Res Int. doi:10.1155/2015/396010

    PubMed  PubMed Central  Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants 17:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sant’Anna-Santos BF, Silva LC, Azevedo AA, Araújo JM, Alves EF, Silva EAM et al (2006) Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environ Exp Bot 58:158–168

    Article  Google Scholar 

  • Sharma A, Bhushan JHA, Dubey RA (2011) Oxidative stress and antioxidative defense systems in plants growing under abiotic stresses. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. CRC press: pp:89–138

  • Singh A, Agrawal M (1996) Response of two cultivars of Triticum aestivum L. to simulated acid rain. Environ Pollut 91:161–167

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Agrawal M (2008) Acid rain and its ecological consequences. J Environ Biol 29:15–24

    CAS  PubMed  Google Scholar 

  • Sivanesan I, Jeong BR (2014) Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora bunge by altering activity of antioxidant enzyme. Sci World J. doi:10.1155/2014/521703

    Google Scholar 

  • Sun ZG, Wang LH, Chen MM, Wang L, Liang CJ, Zhou Q et al (2012) Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicol Environ Saf 79:62–68

    Article  CAS  PubMed  Google Scholar 

  • Sun ZG, Wang LH, Zhou Q, Huang XH (2013) Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings. Chemosphere 93:344–352

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agricultural and Food Chemistry 2:99–122

    CAS  Google Scholar 

  • Taulavuori E, Tahkokorpi M, Laine K, Taulavuori K (2010) Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment. Protoplasma 241:19–27

    Article  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wailes EJ, Cramer GL, Chavez EC, Hansen JM (2010) Arkansas global rice model: international baseline projections for 1997–2010. Arkansas Agricultural Experiment Station, Arkansas, pp 1–46

    Google Scholar 

  • Wang LH, Huang XH, Zhou Q (2008a) Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish. Chemosphere 73:314–319

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Huang XH, Zhou Q (2008b) Response of peroxidase and catalase to acid rain stress during seed germination of rice, wheat, and rape. Frontiers of Environmental Science & Engineering in China 2:364–369

    Article  Google Scholar 

  • Wang CY, Guo P, Han GM, Feng XG, Zhang P, Tian XJ (2010) Effect of simulated acid rain on the litter decomposition of Quercusacutissima and Pinusmassoniana in forest soil microcosms and the relationship with soil enzyme activities. Sci Total Environ 408:2706–2713

    Article  CAS  PubMed  Google Scholar 

  • Welch M (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • Wyrwicka A, Skłodowska M (2006) Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environ Exp Bot 56:198–204

    Article  CAS  Google Scholar 

  • Wyrwicka A, Skłodowska M (2014) Intercompartmental differences between cytosol and mitochondria in their respective antioxidative responses and lipid peroxidation levels in acid rain stress. Acta Physiol Plant 36(4):837–848

    Article  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock J (1976) Laboratory manual for physiological studies of rice. Int Rice Res Inst

  • Zhang XB, Du YP, Wang LH, Zhou Q, Huang XH, Sun ZG (2015a) Combined effects of Lanthanum (III) and acid rain on antioxidant enzyme system in soybean roots. Plos one 10(7). Available: doi:10.1371/journal.pone.0134546

  • Zhang C, Liu F, Kong W, He Y (2015b) Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors 15(7):16576–16588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Spark Plan Project (S2013C100537, 2015GA690089) and The Program of Environmental Science and Technology of Jiangsu Province (No.2007024).

Author information

Authors and Affiliations

Authors

Contributions

Shuming Ju and Liping Wang initiated the project and designed the study. Shuming Ju, Yukun Wang, and Cuiying Zhang performed the research. Shuming Ju, Ningning Yin, and Dan Li wrote the paper.

Corresponding author

Correspondence to Liping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, S., Wang, L., Yin, N. et al. Silicon alleviates simulated acid rain stress of Oryza sativa L. seedlings by adjusting physiology activity and mineral nutrients. Protoplasma 254, 2071–2081 (2017). https://doi.org/10.1007/s00709-017-1099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1099-7

Keywords

Navigation