Skip to main content
Log in

Effects of Simulated Acid Rain on the Antioxidative System in Cinnamomum philippinense Seedlings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study examined the importance of the antioxidative defense mechanism during the application of simulated acid rain (SAR) pH 4, pH 3, pH 2, and pH 6 as control treatment in Cinnamomum philippinense seedlings. Analysis was carried out on 1, 10, and 15 days of spraying SAR. In our results, catalase (CAT), ascorbate peroxidase (APx), guaiacol peroxidase (GPOD), and glutathione reductase (GR) activity significantly were induced on 1 day of spraying SAR pH 3 and pH 2, suggesting that C. philippinense seedlings exposed to pH 3 and pH 2 acid rain for only 1 day were under oxidative stress, and antioxidant enzyme were apparently increased until 10 days of spraying SAR pH 4. However, on 10 days of spraying SAR pH 2, the accumulated intensity of acidity significantly inhibited the activities of CAT and APx accompanying with increased concentrations of malonydialdehyde (MDA). On the contrary, GPOD activity and the ascorbic acid ratio were remarkably increased when spraying SAR pH 2 for 15 days. Therefore, GPOD and ascorbate contribute to the scavenging of ROS at stronger acidity stresses. However, they were not enough to avoid cellular damage, since membrane lipids were injured, and necrosis appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alscher, R. G. (1989). Biosynthesis and antioxidant function of glutathione in plants. Plant Physiology, 77, 457–464.

    Article  CAS  Google Scholar 

  • Anderson, M. D., Prasad, T. K., & Steward, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and GSH reductase during acclimation to chilling in mezocotyls of maize seedlings. Plant Physiology, 109(4), 1247–1257.

    CAS  Google Scholar 

  • Aono, M., Kubo, A., Saji, H., Tanaka, K., & Kondo, N. (1993). Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant & Cell Physiology, 34(1), 129–135.

    CAS  Google Scholar 

  • Barnes, J. D., Balauger, L., Manrique, E., Elvirra, S., & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 85–100.

    Article  CAS  Google Scholar 

  • Bernier, B., Pare’, D., & Brazeau, M. (1989). Natural stresses, nutrient imbalances and forest decline in southeastern Quebec. Water, Air, and Soil Pollution, 48(1–2), 239–250.

    CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein—Dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  • Chang, K. H., Jeng, F. T., Tsai, Y. L., & Lin, P. L. (2000). Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions. Atmospheric Environment, 34(20), 3281–3295.

    Article  CAS  Google Scholar 

  • Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493.

    CAS  Google Scholar 

  • Craig, B. W., & Friedland, A. J. (1991). Spatial patterns in forest composition and standing dead red spruce in montane forests of the Adirondacks and northern Appalachians. Environmental Monitoring and Assessment, 18(2), 129–143.

    Article  Google Scholar 

  • De Jong, D. W. (1972). Detergent extraction of enzymes from tobacco leaves varying in maturity. Plant Physiology, 50(6), 733–737.

    Article  Google Scholar 

  • DeHayes, D. H., Schaberg, P. G., Hawley, G. J., & Strimbeck, G. R. (1999). Acid rain impacts on calcium nutrition and forest health. Bioscience, 49(10), 789–800.

    Article  Google Scholar 

  • De-Pinto, M. C., Paradiso, A., Leonetti, P., & De-Gara, L. (2006). Hydrogen peroxidase, nitric oxide and cytosolic ascorbte peroxidase at the crossroad between defence and cell death. The Plant Journal, 48(5), 784–795.

    Article  CAS  Google Scholar 

  • Dipierro, N., Mondelli, D., Paciolla, C., Brunetti, G., & Dipierro, S. (2005). Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. Journal of Plant Physiology, 162, 529–536.

    Article  CAS  Google Scholar 

  • Fan, H. B., & Wang, Y. H. (2000). Effects of simulated acid rain on germinations, foliar damages, chlorophyll contents and seedling growth of five hardwood species growing in China. Forest Ecology and Management, 126(3), 321–329.

    Article  Google Scholar 

  • Foster, J. G., & Hess, J. L. (1980). Response of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to and atmosphere enriched in oxygen. Plant Physiology, 66(3), 482–487.

    Article  CAS  Google Scholar 

  • Foyer, C., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Article  Google Scholar 

  • Gabara, B., Sklodowska, M., Wyrwicka, A., Glinska, S., & Gapinska, M. (2003). Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. Leaves sprayed with acid rain. Plant Science, 164(4), 507–516.

    Article  CAS  Google Scholar 

  • Gechev, T., Gadjev, J., Van Breusegem, F., Inze, D., Dukiandjiev, S., Toneva, V., et al. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences, 59(4), 708–714.

    Article  CAS  Google Scholar 

  • Guo, T., Zhang, G., Zhou, M., Wu, F., & Chen, J. (2004). Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two genotypes with different Al resistance. Plant and Soil, 258(1), 241–248.

    Article  CAS  Google Scholar 

  • Inze, D., & Van Montagu, M. (1995). Oxidative stress in plants. Current Opinion in Biotechnology, 6(2), 153–158.

    Article  CAS  Google Scholar 

  • Jablonski, L. S., & Anderson, J. W. (1981). Light-dependent reduction of dehydroascobate by ruptured pea chloroplast. Plant Physiology, 66, 1239–1244.

    Article  Google Scholar 

  • Jagels, R., Jiang, M., Marden, S., & Carlisle, J. (2002). Red spruce canopy response to acid fog exposure. Atmospheric Research, 64(1–4), 169–178.

    Article  CAS  Google Scholar 

  • Klapheck, S., Zimmer, I., & Cosse, H. (1990). Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant & Cell Physiology, 31(7), 1005–1013.

    CAS  Google Scholar 

  • Kukavica, B., & Jovanovic, S. V. (2004). Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiologia Plantarum, 122(3), 321–327.

    Article  CAS  Google Scholar 

  • Law, M. Y., Charles, S. A., & Halliwell, B. (1983). Glutathione and ascorbate acid in spinach (Spinacia olerocea) chloroplasts. The Biochemical Journal, 210, 899–903.

    CAS  Google Scholar 

  • Li, Z. Y., Wang, Y. H., Yu, P. T., & Zhang, Z. J. (2007). Health monitoring and regulation measures of Pinus massoniana forests of Chongqing exposed to acid deposition. Ecology and Management, 16(1), 54–59. In Chinese.

    Google Scholar 

  • Lu, S. C. (2007). Acid rain monitoring and assessment of acidic deposition in Taiwan. Taiwan Environmental Protection Agency, EPA-96-FA11-03-DO22.

  • Luwe, M. W. F., Takahama, U., & Heber, U. (1993). Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleraces L.) Leaves. Plant Physiology, 101(3), 969–976.

    CAS  Google Scholar 

  • Macadam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99(3), 872–878.

    Article  CAS  Google Scholar 

  • Martínez-Domínguez, D., de las Heras, M. A., Navarro, F., Torronteras, R., & Córdoba, F. (2008). Efficiency of antioxidant response in Spartina densiflora: An adaptative success in a polluted environment. Environmental and Experimental Botany, 62(1), 69–77.

    Article  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  CAS  Google Scholar 

  • Mittler, R., Feng, X., & Cohen, M. (1998). Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. The Plant Cell, 10(3), 461–473.

    Article  CAS  Google Scholar 

  • Neil, S., Desikan, R., & Hancock, J. (2002). Hydrogen peroxide signaling. Current Opinion in Plant Biology, 5, 388–395.

    Article  Google Scholar 

  • Ouimet, R., Duchesne, L., Houle, D., & Arp, P. A. (2001). Critical loads and exceedances of acid deposition and associated forest growth in the northern hardwood and boreal coniferous forests in Que’ bec, Canada. Water, Air, and Soil Pollution, Focus, 1, 119–134.

    Article  CAS  Google Scholar 

  • Ruley, A. T., Sharma, N. C., & Shivendra, V. S. (2004). Antioxidant denfense in a lead accumulating plant, Sesbania drummondii. Plant Physiology and Biochemistry, 42(11), 899–906.

    Article  CAS  Google Scholar 

  • Scalet, M., Federico, R., Guido, M. C., & Manes, F. (1995). Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environmental and Experimental Botany, 35(3), 417–425.

    Article  CAS  Google Scholar 

  • Schafer, F. Q., & Buettner, G. R. (2000). Acidic pH amplifies iron-mediated lipid peroxidation in cells. Free Radical Biology and Medicine, 28(8), 1175–1181.

    Article  CAS  Google Scholar 

  • Severino, J. F., Stich, K., & Soja, G. (2007). Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environmental Pollution, 146(3), 707–714.

    Article  CAS  Google Scholar 

  • Shi, Q. H., Zhu, Z. J., Juan, L., & Qian, Q. Q. (2006). Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agricultural Sciences in China, 5(10), 767–772.

    Article  CAS  Google Scholar 

  • Takahama, U., Hirotusa, M., & Oniki, T. (1999). Age-dependent change in levels of ascorbatic acid and chlorogenic avid and activities of peroxidase and superoxide dismutasein the apoplast of tobacco leaves: Mechanism of oxidation of chlorogenic acid and in the apoplast. Plant & Cell Physiology, 40(7), 716–724.

    CAS  Google Scholar 

  • Tyree, M. T., Wescott, C. R., & Tabor, C. A. (1991). Diffusion and electric mobility of ions within isolated cuticles of Citrus aurantium. Plant Physiology, 97(1), 273–279.

    Article  CAS  Google Scholar 

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59–66.

    Article  CAS  Google Scholar 

  • Veljovic-Jovanovic, S. D., Pignocchi, C., Noctor, G., & Foyer, C. H. (2001). Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decrease growth and intercellular redistribution of the antioxidant system. Plant Physiology, 127(2), 426–435.

    Article  CAS  Google Scholar 

  • Westman, W. E., & Temple, P. J. (1989). Acid mist and ozone effects on the leaf chemistry of two western conifer species. Environmental Pollution, 57(1), 9–26.

    Article  CAS  Google Scholar 

  • Wyrwicka, A., & Sklodowska, M. (2006). Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environmental and Experimental Botany, 56, 198–204.

    Article  CAS  Google Scholar 

  • Xu, Y., & Carmichael, G. R. (1999). An assessment of sulfur deposition pathways in Asia. Atmospheric Environment, 33(21), 3473–3486.

    Article  CAS  Google Scholar 

  • Yu, J. Q., Ye, S. F., & Huang, L. F. (2002). Effects of simulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L. Photosynthetica, 40(3), 331–335.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a grant (NSC 95-2313-B-005-074) from the National Science Council of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiung-Pin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, EU., Liu, CP. Effects of Simulated Acid Rain on the Antioxidative System in Cinnamomum philippinense Seedlings. Water Air Soil Pollut 215, 127–135 (2011). https://doi.org/10.1007/s11270-010-0464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0464-3

Keywords

Navigation