Skip to main content
Log in

“Hypertractions and hyperstresses convey the same mechanical information Continuum Mech. Thermodyn. (2010) 22:163–176” by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories

  • Commentary
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this commentary, we try to make clearer the state of the art concerning the relation between mechanical contact interactions and the different notions of stresses. We emphasize the importance of the concept of virtual displacements. Its role has been recognized in Mechanics and in Continuum Mechanics long ago (see e.g., Vailati in Il principio dei lavori virtuali da Aristotele a Erone d’Alessandria, 113–128, 1987; Russo in The forgotten revolution, Springer, Berlin, 2003, or Cosserat and Cosserat in Sur la Théorie des Corps Déformables, Herman, Paris, 1909; Cosserat and Cosserat in Note sur la théorie de l.action euclidienne, Gauthier-Villars, Paris, 1908), and it is central as well when starting with an expression of the power expended by internal stresses and deducing the form of contact interactions as when starting with some form of the contact interactions and developing a representation theorem for these contact interactions based on the Cauchy tetrahedron construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abu Al-Rub R.K.: Modeling the interfacial effect on the yield strength and flow stress of thin metal films on substrates. Mech. Res. Commun. 35, 65–72 (2008)

    Article  MathSciNet  Google Scholar 

  2. Banfi C., Marzocchi A., Musesti A.: On the principle of virtual powers in continuum mechanics. Ricerche di Matematica 55, 299–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardenhagen S., Triantafyllidis N.: Derivation of higher order gradient continuum theories in 2,3-D nonlinear elasticity from periodic lattice models. J. Mech. Phys. Solids 42(1), 111–139 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Berdichevsky V.: Variational Principles of Continuum Mechanics. Springer, Berlin (2009)

    Google Scholar 

  5. Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture, J. Elasticity, 91, 1-3, 2008, 1-148 (also appeared as a Springer book: ISBN: 978-1-4020-6394-7)

    Google Scholar 

  6. Casal P., et Gouin H.: ‘Relation entre l’équation de l’énergie et l’équation du mouvement en théorie de Korteweg de la capillaritè’. C. R. Acad. Sci. Paris, t. Série II, N 300(7), 231–233 (1985)

    MATH  Google Scholar 

  7. Casal, P.: ‘La théorie du second gradient et la capillarité’. C. R. Acad. Sci. Paris, t. 274, Série A 1571–1574 (1972)

  8. Casal P.: La capillarité interne, Cahier du groupe Français de rhéologie. CNRS VI 3, 31–37 (1961)

    Google Scholar 

  9. Collin F., Chambon R., Charlier R.: A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int. J. Num. Meth. Eng. 65, 1749–1772 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cosserat E., Cosserat F.: Sur la Théorie des Corps Déformables. Herman, Paris (1909)

    Google Scholar 

  11. Cosserat E., Cosserat F.: Note sur la théorie de l’action euclidienne. Gauthier-Villars, Paris (1908)

    Google Scholar 

  12. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences Serie IIb Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)

    MATH  Google Scholar 

  13. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. dell’Isola, F., Seppecher, P.: Lecture notes of CISM Course C1006 “Variational models and methods in solid and fluid mechanics” held in Udine 12–16 July 2010

  15. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. dell’Isola F., Sciarra G., Batra R.C.: Static deformations of a linear elastic porous body filled with an inviscid fluid. Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III. Vol. III. J. Elast. 72(1-3), 99–120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)

    Article  ADS  MATH  Google Scholar 

  18. Di Carlo e, A.: Tatone (Iper-)Tensioni & Equi-Potenza AIMETA‘01 XV Congresso AIMETA di Meccanica Teorica e Applicata 15th AIMETA Congress of Theoretical and Applied Mechanics 2001

  19. Degiovanni M., Marzocchi A., Musesti A.: Edge-force densities and second-order powers. Annali di Matematica 185, 81–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Degiovanni M., Marzocchi A., Musesti A.: Cauchy fluxes associated with tensor fields having divergence measure. Arch. Ration. Mech. Anal. 147, 197–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 88(2), 95–133 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Edoardo Benvenuto La scienza delle costruzioni e il suo sviluppo storico Sansoni, Firenze, 1981

  23. Forest, S., Amestoy, M., Cantournet, S., Damamme, G., Kruch, S.: Mécanique des Milieux Continus ECOLE DES MINES DE PARIS Année 2005–2006

  24. Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with applications to liquid flow at small-length scales. Arch. Rational Mech. Anal 182, 513–554 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  26. Germain P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  27. Germain P.: ‘Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus’. C. R. Acad. Sci. Paris Série A-B 274, A1051–A1055 (1972)

    MathSciNet  Google Scholar 

  28. Gurtin M.: Configurational Force as a Basic Concept of Continuum Physics. Springer, Berlin (2000)

    Google Scholar 

  29. Jean-Jacques A., Pierre S., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirchner, N., Steinmann, P.: On the material setting of gradient hyperelasticity (English summary). Math. Mech. Solids 12 (2007)

  31. Larsson R., Diebels S.: A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lucchesi M., Silhavý M., Zani N.: On the balance equation for stresses concentrated on curves. J. Elast. 90, 209–223 (2008)

    Article  MATH  Google Scholar 

  33. Marzocchi A., Musesti A.: Balanced virtual powers in continuum mechanics. Meccanica 38, 369–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marzocchi A., Musesti A.: ‘Decomposition and integral representation of Cauchy interactions associated with measures’. Cont. Mech. Thermodyn. 13, 149–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maugin, G.: MathReview MR1437786 (98d:73003) 73A05 (73B18 73S10) on the paper [13]

  36. Maugin, G.: MathReview MR1600928 (99e:73005) on the paper G. Capriz and G. Mazzini Invariance and balance in continuum mechanics. Nonlinear analysis and continuum mechanics (Ferrara,1992), 27–35, Springer, New York (1998)

  37. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mueller, I., Ruggeri, T.: Extended Thermodynamics, 2nd edn. Springer, New York (1993) (Rational Extended Thermodynamics, Springer New York(1998))

  39. Noll W., Virga E.G.: On edge interactions and surface tension. Arch. Rational Mech. Anal. 111(1), 1–31 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Podio-Guidugli P.: A virtual power format for thermomechanics. Continuum Mech. Thermodyn. 20, 479–487 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  42. Podio-Guidugli P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. (English, Serbo-Croatian summary) Issue dedicated to the memory of Professor Rastko Stojanovic (Belgrade 2002). Theor. Appl. Mech. 28(29), 261–276 (2002)

    Article  MathSciNet  Google Scholar 

  43. Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information ContinuumMech. Thermodynamics 22, 163–176 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Polizzotto C.: Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions. Eur. J. Mech. A Solids 26(2), 189–211 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Russo L.: The Forgotten Revolution Springer, Berlin (2003)

  46. Schwartz L.: Théorie des Distributions. Hermann, Paris (1973)

    Google Scholar 

  47. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sciarra G., dell’Isola F., Hutter K.: A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13(5), 287–306 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity part I: general theory. J. Mech. Mat. Struct. 3, 507–526 (2008)

    Article  Google Scholar 

  50. Seppecher, P.: ‘Etude des conditions aux limites en théorie du second gradient: cas de la capillarité’, C. R. Acad. Sci. Paris, t. 309, Serie II (1989) 497–502

  51. Seppecher, P.: Etude d’une Modélisation des Zones Capillaires Fluides: Interfaces et Lignes de Contact, Thèse de l’Université Paris VI, Avril 1987

  52. Šilhavý M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch.Ration. Mech. Anal. 90, 195–211 (1985)

    Article  MATH  Google Scholar 

  53. Šilhavý M.: Cauchy’s stress theorem and tensor fields with divergences in Lp. Arch. Ration. Mech. Anal. 116, 223–255 (1991)

    Article  MATH  Google Scholar 

  54. Sokolowski, M.: Theory of couple-stresses in bodies with constrained rotations. In CISM courses and lectures. Vol. 26, Springer, Berlin (1970)

  55. Suiker A.S.J., Chang C.S.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142, 223–234 (2000)

    Article  MATH  Google Scholar 

  56. Toupin R.A.: Elastic materials with couple-stresses. Arch. Rat. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  57. Triantafyllidis, N., Bardenhagen S.: On higher order gradient continuum theories in $1$-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elasticity 33 (1993)

  58. Triantafyllidis N., Bardenhagen S.: The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J. Mech. Phys. Solids 44(11), 1891–1928 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Vailati G.: Il principio dei lavori virtuali da Aristotele a Erone d’Alessandria, Scritti, vol. II, pp. 113–128. Bologna, Forni (1987) (Atti della R. Accademia delle Scienze di Torino, vol. XXXII, adunanza del 13 giugno 1897, quaderno IG (091) 75 I–III)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco dell’Isola.

Additional information

Communicated by Stefan Seelecke.

In memory of Prof. Carlo Gavarini, who recently passed away. He assured a visiting grant to Rome for P.S. in 1996, during which the paper [13] was written.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dell’Isola, F., Seppecher, P. “Hypertractions and hyperstresses convey the same mechanical information Continuum Mech. Thermodyn. (2010) 22:163–176” by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories. Continuum Mech. Thermodyn. 23, 473–478 (2011). https://doi.org/10.1007/s00161-010-0176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0176-3

Keywords

Navigation