Skip to main content
Log in

Fractional generalized Hamiltonian mechanics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present a new fractional theory of dynamics, i.e., the dynamics of generalized Hamiltonian system with fractional derivatives (fractional generalized Hamiltonian mechanics). Based on the definition of Riemann–Liouville fractional derivatives, the fractional generalized Hamiltonian equations are obtained, the gradient representation and second-order gradient representation of the fractional generalized Hamiltonian system are studied, and then the conditions on which the system can be considered as a gradient system and a second-order gradient system are given, respectively. By using the method and results of this paper, the conditions under which a fractional generalized Hamiltonian equation can be reduced to a generalized Hamiltonian equation, a fractional Hamiltonian equation and a Hamiltonian equation are given, respectively, and then the existing conditions and their form of gradient equation and second-order gradient equation are investigated. Finally, an example of a fractional dynamical system is given to illustrate the method and results of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  2. Feng K.: On Difference Schemes and Symplectic Geometry. Science Press, Beijing (1985)

    Google Scholar 

  3. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  4. Zhong W.X.: Duality System in Applied Mechanics. Science Press, Beijing (2002)

    Google Scholar 

  5. Zhu W.Q.: Dynamics and Control of Nonlinear Stochastic System: Hamilton Theory System Frame. Science Press, Beijing (2003)

    Google Scholar 

  6. Mei F.X., Wu H.B.: Dynamics of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2009)

    Google Scholar 

  7. Luo S.K., Zhang Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  8. Chen X.W.: Global Analysis for Birkhoff Systems. Henan University Press, Kaifeng (2002)

    Google Scholar 

  9. Cai J.L.: Conformal invariance and conserved quantity of Hamilton system under second-class Mei symmetry. Acta Phys. Pol. A. 117, 445–448 (2010)

    Google Scholar 

  10. Luo S.K, Li Z.J., Li L.: A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)

    Article  MathSciNet  Google Scholar 

  11. Pauli W.: On the Hamiltonian structure of non-local field theories. IL Nuovo Cimento 10, 648–667 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  12. Martin J.L.: Generalized classical dynamicals and the ‘classical analogue’ of Fermi oscillator. Proc. Roy. A 251, 536–542 (1959)

    Article  MATH  Google Scholar 

  13. Li J.B., Zhao X.H., Liu Z.R.: Theory and Application of the Generalized Hamilton Systems. Science Press, Beijing (1994)

    Google Scholar 

  14. Maschke, B.M.J., Ortega, R., van der Schaft, A.: Energybased Lyapunov functions for forced Hamiltonian systems with dissipation. In: Proceedings of CDC, Tampa, FL, vol. 98, pp. 3599–3604 (1998)

  15. Chen D.Z., Xi Z.R., Lu Q., Mei S.W.: Geometric structure of general Hamiltonian control system and its application. Sci. China Ser. E 30, 341–354 (2000)

    Google Scholar 

  16. Wang Y.Z., Cheng D.Z., Li C.W.: Generalized Hamiltonian realization and its application to power systems. Acta Autom. Sin. 28, 745–753 (2002)

    MathSciNet  Google Scholar 

  17. Mei F.X.: Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Phys. Sin. 52, 1048–1050 (2003)

    MATH  Google Scholar 

  18. Huang, Z.L.: The several class of dynamics and control of nonlinear stochastic system. Ph.D. Dissertation (Mentor: Zhu, W.Q.), Zhejiang University, Hangzhou (2005)

  19. Zhang S.Y., Deng Z.C.: An algorithm for preserving structure of generalized Hamilton system. Chin. J. Comput. Mech. 22, 47–50 (2005)

    Article  Google Scholar 

  20. Jia LQ., Zheng S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Jiang W.A., Luo S.K.: Mei symmetry leading to Mei conserved quantity of generalized Hamilton systems. Acta Phys. Sin. 60, 060201 (2011)

    MATH  Google Scholar 

  22. Jiang W.A., Luo S.K.: Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MathSciNet  Google Scholar 

  23. Jiang W.A., Luo S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo S.K, Li Z.J., Peng W., Li L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  Google Scholar 

  25. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  26. Ross B.: Fractional Calculus and Its Applications. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  27. Mandelbrot B.B., Ness J.W.V.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 237–422 (1968)

    Article  Google Scholar 

  28. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amersterdam (2006)

    MATH  Google Scholar 

  29. Mandelbrot B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  30. Riewe F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E. 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  31. Riewe F.: Mechanics with fractional derivatives. Phys. Rev. E. 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  32. Klimek M.: Fractional sequential mechanics model with symmetric fractional derivatives. Czechoslov. J. Phys. 51, 1348–1354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Klimek M.: Stationary conservation laws for fractional differential equations with variable coefficients. J. Phys. A Math. Gen. 35, 6675–6693 (2001)

    Article  MathSciNet  Google Scholar 

  34. Agrawal O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Agrawal O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Baleanu D., Avkar T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento Della Societa Italiana Di Fisica B 119, 73–79 (2004)

    Google Scholar 

  37. Muslih S.I., Baleanu D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tarasov V.E., Zaslavsky G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tarasov V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  40. Podlubny I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  41. Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  42. Laskin N.: Fractional Schrodinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  43. Frederico S.F., Torres D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum. 3, 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Mathai A.M., Saxena R.K.: The H-function With Applications in Statistics and Other Disciplines. Wiley Eastern Limited, New Delhi (1978)

    MATH  Google Scholar 

  45. Chen, L.Q., Zhao, W.J., Zu, W.J.: Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib. 278(4/5), 861–871(2004)

    Google Scholar 

  46. Chen L.C., Zhu W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 2312241 (2009)

    Google Scholar 

  47. Radwan A.G., Soliman A.M., Elwakli A.S. et al.: On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40, 2317–2328 (2009)

    Article  MATH  Google Scholar 

  48. Shen Y.J., Yang S.P., Xing H.J.: Super-Harmonic resonance of fractional-order Duffing oscillator. Acta Mech. Sin. 44, 762–768 (2012)

    MathSciNet  Google Scholar 

  49. Wang Z.H., Hu H.Y.: Stability of a linear oscillator with damping force of fractional order derivative. Sci. China Phys. Mech. Astron. 53, 345–352 (2010)

    Article  Google Scholar 

  50. Zhang H., Li G.H., Luo M.K.: Fractional backward Kolmogorov equations. Chin. Phys. B 21, 060201 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Luo, SK. Fractional generalized Hamiltonian mechanics. Acta Mech 224, 1757–1771 (2013). https://doi.org/10.1007/s00707-013-0826-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0826-1

Keywords

Navigation