Skip to main content
Log in

Subordination results for a class of multi-term fractional Jeffreys-type equations

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 17 April 2024

This article has been updated

Abstract

Jeffreys equation and its fractional generalizations provide extensions of the classical diffusive laws of Fourier and Fick for heat and particle transport. In this work, a class of multi-term time-fractional generalizations of the classical Jeffreys equation is studied. Restrictions on the parameters are derived, which ensure that the fundamental solution to the one-dimensional Cauchy problem is a spatial probability density function evolving in time. The studied equations are recast as Volterra integral equations with kernels represented in terms of multinomial Mittag-Leffler functions. Applying operator-theoretic approach, we establish subordination results with respect to appropriate evolution equations of integer order, depending on the considered range of parameters. Analyticity of the corresponding solution operator is also discussed. The main tools in the proofs are Laplace transform and the Bernstein functions’ technique, especially, some properties of the sets of real powers of complete Bernstein functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  2. Atanacković, T., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. John Wiley & Sons, London (2014)

    Book  Google Scholar 

  3. Awad, E.: Dual-phase-lag in the balance: Sufficiency bounds for the class of Jeffreys’ equations to furnish physical solutions. Int. J. Heat Mass Transf. 158, 119742 (2020)

    Article  Google Scholar 

  4. Awad, E., Sandev, T., Metzler, R., Chechkin, A.: From continuous-time random walks to the fractional Jeffreys equation: Solution and properties. Int. J. Heat Mass Transf. 181, 121839 (2021)

    Article  Google Scholar 

  5. Awad, E., Sandev, T., Metzler, R., Chechkin, A.: Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case. Chaos Soliton. Fract. 152, 111357 (2021)

    Article  MathSciNet  Google Scholar 

  6. Baule, A., Friedrich, R.: Joint probability distributions for a class of non-Markovian processes. Phys. Rev. E 71, 026101 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bazhlekova, E.: Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 21(4), 869–900 (2018). https://doi.org/10.1515/fca-2018-0048

    Article  MathSciNet  Google Scholar 

  8. Bazhlekova, E.: Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives. Fract. Calc. Appl. Anal. 24(1), 88–111 (2021). https://doi.org/10.1515/fca-2021-0005

    Article  MathSciNet  Google Scholar 

  9. Bazhlekova, E.: Subordination Principle for Generalized Fractional Evolution Equations. D.Sc. Dissertation, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia (2022)

  10. Bazhlekova, E., Bazhlekov, I.: Unidirectional flows of fractional Jeffreys’ fluids: Thermodynamic constraints and subordination. Comput. Math. Appl. 73(6), 1363–1376 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bazhlekova, E., Bazhlekov, I.: Subordination approach to multi-term time-fractional diffusion-wave equation. J. Comput. Appl. Math. 339, 179–192 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bazhlekova, E., Bazhlekov, I.: Transition from diffusion to wave propagation in fractional Jeffreys-type heat conduction equation. Fractal Fract. 4(3), 32 (2020)

    Article  Google Scholar 

  13. Bender, C., Bormann, M., Butko, Y.A.: Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations. Fract. Calc. Appl. Anal. 25(5), 1818–1836 (2022). https://doi.org/10.1007/s13540-022-00082-8

    Article  MathSciNet  Google Scholar 

  14. Chechkin, A.V., Hofmann, M., Sokolov, I.M.: Continuous-time random walk with correlated waiting times. Phys. Rev. E 80, 031112 (2009)

    Article  MathSciNet  Google Scholar 

  15. Feng, L., Liu, F., Turner, I., Zheng, L.: Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid. Fract. Calc. Appl. Anal. 21(4), 1073–1103 (2018). https://doi.org/10.1515/fca-2018-0058

    Article  MathSciNet  Google Scholar 

  16. Fogedby, H.C.: Langevin equations for continuous time Lévy flights. Phys. Rev. E 50, 1657 (1994)

    Article  Google Scholar 

  17. Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions. Related Topics and Applications. Springer, Berlin, Heidelberg (2020)

    Google Scholar 

  18. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, 223–276. Springer-Verlag, Wien/New York (1997)

  19. Górska, K., Horzela, A., Lenzi, E., Pagnini, G., Sandev, T.: Generalized Cattaneo (telegrapher’s) equations in modeling anomalous diffusion phenomena. Phys. Rev. E 102, 023719 (2020)

    Article  MathSciNet  Google Scholar 

  20. Górska, K., Horzela, A., Penson, K.A.: Non-Debye relaxations: the ups and downs of the stretched exponential vs. Mittag-Leffler’s matchings. Fractal Fract. 5, 265 (2021)

    Article  Google Scholar 

  21. Górska, K., Horzela, A.: Subordination and memory dependent kinetics in diffusion and relaxation phenomena. Fract. Calc. Appl. Anal. 26(2), 480–512 (2023). https://doi.org/10.1007/s13540-023-00141-8

    Article  MathSciNet  Google Scholar 

  22. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148(2), 778–788 (1966)

    Article  Google Scholar 

  23. Hadid, S.B., Luchko, Y.: An operational method for solving fractional differential equations of an arbitrary real order. Panam. Math. J. 6(1), 57–73 (1996)

    MathSciNet  Google Scholar 

  24. Iomin, A., Metzler, R., Sandev, T.: Topological subordination in Quantum Mechanics. Fractal Fract. 7, 431 (2023)

    Article  Google Scholar 

  25. Joseph, D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  Google Scholar 

  26. Kiryakova, V.: A guide to special functions in fractional calculus. Mathematics 9, 106 (2021)

  27. Kiryakova, V., Paneva-Konovska, J.: Going next after “A guide to special functions in fractional calculus”: A discussion survey. Mathematics 12(2), 319 (2024). https://doi.org/10.3390/math12020319

  28. Li, Z., Liu, Y., Yamamoto, M.: Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comp. 257, 381–397 (2015)

    Article  MathSciNet  Google Scholar 

  29. Liu, Y., Zheng, L., Zhang, X.: Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61, 443–450 (2011)

    Article  MathSciNet  Google Scholar 

  30. Luchko, Yu., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 24, 207–233 (1999)

    MathSciNet  Google Scholar 

  31. Maes, F., Van Bockstal, K.: Existence and uniqueness of a weak solution to fractional single-phase-lag heat equation. Fract. Calc. Appl. Anal. 26(4), 1663–1690 (2023). https://doi.org/10.1007/s13540-023-00177-w

    Article  MathSciNet  Google Scholar 

  32. Magdziarz, M.: Black-Scholes formula in subdiffusive regime. J. Stat. Phys. 136, 553–564 (2009). https://doi.org/10.1007/s10955-009-9791-4

    Article  MathSciNet  Google Scholar 

  33. Miller, L., Yamamoto, M.: Coefficient inverse problem for a fractional diffusion equation. Inverse Problems 29, 075013 (2013)

    Article  MathSciNet  Google Scholar 

  34. Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel, Boston, Berlin (1993)

    Book  Google Scholar 

  35. Qi, H., Xu, M.: Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative. Appl. Math. Model. 33, 4184–4191 (2009)

    Article  MathSciNet  Google Scholar 

  36. Sandev, T., Iomin, A.: Special Functions of Fractional Calculus: Applications to Diffusion and Random Search Processes. World Scientific, Singapore (2022)

    Book  Google Scholar 

  37. Sandev, T., Metzler, R., Chechkin, A.: From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21(1), 10–28 (2018). https://doi.org/10.1515/fca-2018-0002

    Article  MathSciNet  Google Scholar 

  38. Schilling, R., Song, R., Vondraček, Z.: Bernstein Functions: Theory and Applications. De Gruyter, Berlin (2010)

    Google Scholar 

  39. Sin, C.S., Rim, J.U., Choe, H.S.: Initial-boundary value problems for multi-term time-fractional wave equations. Fract. Calc. Appl. Anal. 25(5), 1994–2019 (2022). https://doi.org/10.1007/s13540-022-00080-w

    Article  MathSciNet  Google Scholar 

  40. Tzou, D.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington DC (1997)

    Google Scholar 

  41. Zhu, S., Dai, P., Qu, Y., Li, G.: Subordination principle and approximation of fractional resolvents and applications to fractional evolution equations. Fract. Calc. Appl. Anal. 26(2), 781–799 (2023). https://doi.org/10.1007/s13540-023-00132-9

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Bazhlekova.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhlekova, E. Subordination results for a class of multi-term fractional Jeffreys-type equations. Fract Calc Appl Anal (2024). https://doi.org/10.1007/s13540-024-00275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13540-024-00275-3

Keywords

Mathematics Subject Classification

Navigation