Skip to main content

Advertisement

Log in

Evaluation of ENSO in CMIP5 and CMIP6 models and its significance in the rainfall in Northeast Thailand

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

El Niño Southern Oscillation (ENSO) is a significant form of internal climate variability resulting from the interactions between the atmosphere and ocean in the tropical Pacific. It is a main driver of interannual rainfall variability in Northeast Thailand, where rainfed agriculture is one of the largest economic sectors. Therefore, it is essential to understand the ability of climate models to simulate the basic characteristics of ENSO phenomena and project its impacts in the region. We evaluated the ability of 12 climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and their 12 predecessor models from the fifth phase (CMIP5) to simulate ENSO and its impact on rainfall over Northeast Thailand using thirteen performance metrics under seven criteria considering the simulation of observed indices, pattern, variability, peaks and seasonal phase locking of ENSO. The intensity and frequency of the ENSO events were projected for the near future (2021–2050). Although six CMIP5 and eight CMIP6 models performed well in simulating half of the ENSO evaluation metrics (performance score > 40%) such as ENSO variability, seasonal phase locking, location of ENSO variability, and dominant secondary peak in SST variability, we did not find very compelling evidence of improved ENSO simulation in CMIP6 compared to CMIP5 models. However, high rainfall in extreme La Niña events and low rainfall in extreme El Niño events with rainfall anomalies of 0.4 mm/day and − 0.3 mm/day, respectively were observed over Northeast Thailand due to the interaction of the easterly winds from the Pacific Ocean with the south-westerly flow from the Indian Ocean. The corresponding sea level pressure maps further confirmed the mechanisms associated with this phenomenon over the region. The ensemble averages of models from both phases predicted an increase in intensity (by 32–47%) and frequency (by 10–50%) in the near-future (2021–2050) with a slightly higher increase by CMIP6 models compared to CMIP5 models under medium and high emission scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Almazroui M, Nazrul Islam M, Saeed S, Alkhalaf AK, Dambul R (2017) Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula using three categories of Cmip5 multimodel ensembles. Earth Syst Environ 1:23. https://doi.org/10.1007/s41748-017-0027-5

    Article  Google Scholar 

  • An S-I, Kug J-S, Timmermann A, Kang I-S, Timm O (2007) The influence of ENSO on the generation of decadal variability in the North Pacific. J Clim 20:667–680

    Article  Google Scholar 

  • Anderson BT (2007) Intraseasonal atmospheric variability in the extratropics and its relation to the onset of tropical Pacific sea surface temperature anomalies. J Clim 20:926–936

    Article  Google Scholar 

  • Bellenger H, Guilyardi É, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: From CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Bi D, Dix M, Marsland S, O’farrell S, Sullivan A, Bodman R, Law R, Harman I, Srbinovsky J, Rashid HA (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. J South Hemisph Earth Syst Sci 70:225–251

    Article  Google Scholar 

  • BoM AG (2021) The three phases of the El Niño–Southern Oscillation (ENSO). http://www.bom.gov.au/climate/enso/history/ln-2010-12/three-phases-of-ENSO.shtml. Accessed 20 Feb 2020

  • Brown JN, Langlais C, Maes C (2014) Zonal structure and variability of the western Pacific dynamic warm pool edge in CMIP5. Clim Dyn 42:3061–3076

    Article  Google Scholar 

  • Brown JR, Brierley CM, An S-I, Guarino M-V, Stevenson S, Williams CJR, Zhang Q, Zhao A, Abe-Ouchi A, Braconnot P (2020) Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. ClimP 16:1777–1805

    Google Scholar 

  • Cai W, Sullivan A, Cowan T (2009) Rainfall Teleconnections with Indo-Pacific Variability in the WCRP CMIP3 Models. J Clim 22:5046–5071. https://doi.org/10.1175/2009JCLI2694.1

    Article  Google Scholar 

  • Cai W, Van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J Clim 24:3910–3923

    Article  Google Scholar 

  • Chapman WE, Subramanian AC, Xie S-P, Sierks MD, Ralph FM, Kamae Y (2021) Monthly Modulations of ENSO Teleconnections: Implications for Potential Predictability in North America. J Clim 34:5899–5921. https://doi.org/10.1175/JCLI-D-20-0391.1

    Article  Google Scholar 

  • Chen D, Cane MA (2008) El Niño prediction and predictability. J Comput Phys 227:3625–3640. https://doi.org/10.1016/j.jcp.2007.05.014

    Article  Google Scholar 

  • Chuan GK (2005) The climate of southeast Asia. Phys Geogr Southeast Asia 4:80

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2023) ERA5 monthly averaged data on single levels from 1940 to present. In: Copernicus Clim. Chang Serv Clim. Data Store. https://doi.org/10.24381/cds.f17050d7. Accessed 15 Dec 2019

  • Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE (2020) Insights from Earth system model initial-condition large ensembles and future prospects. Nat Clim Chang 10:277–286

    Article  Google Scholar 

  • Dieppois B, Rouault M, New M (2015) The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models. Clim Dyn 45:2425–2442

    Article  Google Scholar 

  • Endris HS, Lennard C, Hewitson B, Dosio A, Nikulin G, Artan GA (2019) Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim Dyn 52:2029–2053

    Article  Google Scholar 

  • EPA (United States Environmental Protection Agency) (2022) Climate change indicators: greenhouse gases. https://www.epa.gov/climate-indicators/greenhouse-gases#:~:text=Climateforcingreferstoa,climateforcing%2Corwarmingeffect . Accessed 4 Jul 2023

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958

    Article  Google Scholar 

  • Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J Clim 14:3086–3101

    Article  Google Scholar 

  • Forootan E, Awange JL, Schumacher M, Anyah RO, van Dijk AIJM, Kusche J (2016) Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia. Remote Sens Environ 172:50–66

    Article  Google Scholar 

  • Freund MB, Brown JR, Henley BJ, Karoly DJ, Brown JN (2020) Warming patterns affect El Niño diversity in CMIP5 and CMIP6 models. J Clim 33:8237–8260

    Article  Google Scholar 

  • Fröhlich C, Lean J (2004) Solar radiative output and its variability: evidence and mechanisms. Astron Astrophys Rev 12:273–320

    Article  Google Scholar 

  • Garfinkel CI, Gordon A, Oman LD, Li F, Davis S, Pawson S (2018) Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO. Atmos Chem Phys 18:4597–4615

    Article  Google Scholar 

  • Gautam HR, Bhardwaj ML, Kumar R (2013) Climate change and its impact on plant diseases. Curr Sci 105:1685–1691

    Google Scholar 

  • Graham FS, Wittenberg AT, Brown JN, Marsland SJ, Holbrook NJ (2017) Understanding the double peaked El Niño in coupled GCMs. Clim Dyn 48:2045–2063

    Article  Google Scholar 

  • Grifoll M, Cerralbo P, Guillén J, Espino M, Hansen LB, Sánchez-Arcilla A (2019) Characterization of bottom sediment resuspension events observed in a micro-tidal bay. Ocean Sci 15:307–319

    Article  Google Scholar 

  • Gu L, Chen J, Xu C-Y, Kim J-S, Chen H, Xia J, Zhang L (2019) The contribution of internal climate variability to climate change impacts on droughts. Sci Total Environ 684:229–246

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Thépaut J-N (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Jia G, Shevliakova E, Artaxo P, Noblet-Ducoudré D, Houghton R, House J, Kitajima K, Lennard C, Popp A, Sirin A, Sukumar R, Verchot L (2019) Land-climate interactions. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. PIK: Potsdam-Institut fur Klimafolgenforschung

  • Jiang W, Huang P, Huang G, Ying J (2021) Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J Clim 34:2839–2851. https://doi.org/10.1175/JCLI-D-20-0551.1

    Article  Google Scholar 

  • Khadka D, Babel MS, Abatan AA, Collins M (2022a) An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. Int J Climatol 42:1181–1202. https://doi.org/10.1002/joc.7377

    Article  Google Scholar 

  • Khadka D, Babel MS, Collins M, Shrestha S, Virdis SGP, Chen AS (2022b) Projected changes in the near-future mean climate and extreme climate events in northeast Thailand. Int J Climatol 42:2470–2492. https://doi.org/10.1002/joc.7377

    Article  Google Scholar 

  • Khadka D, Babel MS, Shrestha S, Virdis SGP, Collins M (2021) Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather Clim Extrem 34:100399. https://doi.org/10.1016/j.wace.2021.100399

    Article  Google Scholar 

  • Kirtphaiboon S, Wongwises P, Limsakul A, Sooktawee S, Humphries U (2014) Rainfall variability over Thailand related to the El Nino-Southern Oscillation (ENSO). J Sustain Energy Environ 5:37–42

    Google Scholar 

  • Lacombe G, Polthanee A, Trébuil G (2017) Long-term change in rainfall distribution in Northeast Thailand: will cropping systems be able to adapt? Cah Agric 26:25001. https://doi.org/10.1051/cagri/2017006

    Article  Google Scholar 

  • Lee JH, Lee J, Julien PY (2018) Global climate teleconnection with rainfall erosivity in South Korea. CATENA 167:28–43

    Article  Google Scholar 

  • Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780

    Article  Google Scholar 

  • Liao Y, Chen Q, Zhou X (2019) Seasonal evolution of the effects of the El Niño-Southern Oscillation on lower stratospheric water vapor: delayed effects in late winter and early spring. Earth Planet Phys 3:489–500

    Article  Google Scholar 

  • Limjirakan S, Limsakul A (2007) Spatio-temporal changes in total annual rainfall and the annual number of rainy days. In: Conference Handbook Greenhouse 2007. Australia: Commonwealth Scientific and Industrial Research Organisation CSIRO AU, p 186

  • Limsakul A, Singhruck P (2016) Long-term trends and variability of total and extreme precipitation in Thailand. Atmos Res 169:301–317

    Article  Google Scholar 

  • Lindsey R (2009) Climate Variability: Oceanic Niño Index. In: News Featur. https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-niño-index. Accessed 4 Jul 2023

  • Liu B, Tan X, Gan TY, Chen X, Lin K, Lu M, Liu Z (2020) Global atmospheric moisture transport associated with precipitation extremes: mechanisms and climate change impacts. Wiley Interdiscip Rev Water 7:e1412

    Article  Google Scholar 

  • Liu M, Ren H-L, Zhang R, Ineson S, Wang R (2021) ENSO phase-locking behavior in climate models: from CMIP5 to CMIP6. Environ Res Commun 3:31004. https://doi.org/10.1088/2515-7620/abf295

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176

    Article  Google Scholar 

  • Lovino MA, Müller OV, Berbery EH, Müller GV (2018) Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. Int J Climatol 38:e1158–e1175

    Article  Google Scholar 

  • McGregor S, Timmermann A, Schneider N, Stuecker MF, England MH (2012) The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J Clim 25:5566–5586

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237–3260

    Article  Google Scholar 

  • Meinshausen M, Nicholls Z, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N (2019) The SSP greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev. Discuss

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. https://doi.org/10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Rovere ELL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Rooijen SV, Victor N, Dadi Z (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nath R, Luo Y, Chen W, Cui X (2018) On the contribution of internal variability and external forcing factors to the Cooling trend over the Humid Subtropical Indo-Gangetic Plain in India. Sci Rep 8:1–11

    Article  Google Scholar 

  • Neelin JD, Jin F-F, Syu H-H (2000) Variations in ENSO phase locking. J Clim 13:2570–2590

    Article  Google Scholar 

  • NOAA (National Oceanic and Administration) (2021) El Niño Index Dashboard. https://psl.noaa.gov/enso/dashboard.html. Accessed 4 Jul 2023

  • NOAA (National Oceanic and Atmospheric (2023) Southern Oscillation Index (SOI). https://www.ncei.noaa.gov/access/monitoring/enso/soi#calculation-of-soi. Accessed 4 Jul 2023

  • O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Chang 42:169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

  • O’Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle J-P (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Philander SG (1998) Who is El Niño? Eos. Trans Am Geophys Union 79:170

    Article  Google Scholar 

  • Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier Sci Publ 17:425

    Google Scholar 

  • Rao J, Ren R (2017) Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Adv Atmos Sci 34:1121–1133

    Article  Google Scholar 

  • Räsänen TA, Lindgren V, Guillaume JHA, Buckley BM, Kummu M (2016) On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia. Clim past 12:1889–1905

    Article  Google Scholar 

  • Ren H-L, Lu B, Wan J, Tian B, Zhang P (2018) Identification standard for ENSO events and its application to climate monitoring and prediction in China. J Meteorol Res 32:923–936

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  • Roy I, Gagnon AS, Siingh D (2019) Evaluating ENSO teleconnections using observations and CMIP5 models. Theor Appl Climatol 136:1085–1098

    Article  Google Scholar 

  • Saji NH, Xie S-P, Yamagata T (2006) Tropical Indian Ocean Variability in the IPCC Twentieth-Century Climate Simulations. J Clim 19:4397–4417. https://doi.org/10.1175/JCLI3847.1

    Article  Google Scholar 

  • Shrestha A, Kostaschuk R (2005) El Nino/Southern Oscillation (ENSO)-related variablity in mean-monthly streamflow in Nepal. J Hydrol 308:33–49

    Article  Google Scholar 

  • Singhrattna N, Rajagopalan B, Clark M, Krishna Kumar K (2005a) Seasonal forecasting of Thailand summer monsoon rainfall. Int J Climatol A J R Meteorol Soc 25:649–664

    Article  Google Scholar 

  • Singhrattna N, Rajagopalan B, Kumar KK, Clark M (2005b) Interannual and Interdecadal Variability of Thailand Summer Monsoon Season. J Clim 18:1697–1708. https://doi.org/10.1175/JCLI3364.1

    Article  Google Scholar 

  • Steinhoff DF, Monaghan AJ, Clark MP (2015) Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs. Clim Dyn 44:1329–1349

    Article  Google Scholar 

  • Suwanlee SR, Som-ard J (2020) Spatial Interaction Effect of Population Density Patterns in Sub-Districts of Northeastern Thailand. ISPRS Int J Geo-Information 9:556

    Article  Google Scholar 

  • Taschetto AS, Sen GA, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885

    Article  Google Scholar 

  • Taschetto AS, Ummenhofer CC, Stuecker MF, Dommenget D, Ashok K, Rodrigues RR, Yeh S (2020) ENSO Atmospheric Teleconnections. In: McPhaden MJ, Santoso A, Cai W (eds) El Niño southern oscillation in a changing climate. Wiley Online Library, pp 309–335

  • Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12:2727–2765

    Article  Google Scholar 

  • Tomkratoke S, Sirisup S (2022) Influence and variability of monsoon trough and front on rainfall in Thailand. Int J Climatol 42:619–634

    Article  Google Scholar 

  • Tziperman E, Cane MA, Zebiak SE, Xue Y, Blumenthal B (1998) Locking of El Nino’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J Clim 11:2191–2199

    Article  Google Scholar 

  • Weller E, Cai W (2013) Asymmetry in the IOD and ENSO Teleconnection in a CMIP5 Model Ensemble and Its Relevance to Regional Rainfall. J Clim 26:5139–5149. https://doi.org/10.1175/JCLI-D-12-00789.1

    Article  Google Scholar 

  • Wikarmpapraharn C, Kositsakulchai E (2010) Relationship between ENSO and rainfall in the Central Plain of Thailand. Agric Nat Resour 44:744–755

    Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP, Xu C, Deng J (2013) Influence of ENSO on precipitation in the East River basin, South China. J Geophys Res Atmos 118:2207–2219

    Article  Google Scholar 

  • Zhang Q, Xu C, Jiang T, Wu Y (2007) Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. J Hydrol 333:265–274

    Article  Google Scholar 

  • Zhang Y, Qian Y, Dulière V, Salathé EP, Leung LR (2012) ENSO anomalies over the Western United States: present and future patterns in regional climate simulations. Clim Change 110:315–346

    Article  Google Scholar 

  • Zhuan M-J, Chen J, Shen M-X, Xu C-Y, Chen H, Xiong L-H (2018) Timing of human-induced climate change emergence from internal climate variability for hydrological impact studies. Hydrol Res 49:421–437

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to the “Enhancing Resilience to Future Hydro-meteorological Extremes in the Mun River Basin in Northeastern Thailand-ENRICH” project funded by Thailand Science Research and Innovation (TSRI), the National Research Council of Thailand (NRCT), and the Natural Environment Research Council (NERC).

Funding

This project is funded by the Thailand Science Research and Innovation (TSRI), the National Research Council of Thailand (NRCT) (RDG6130025), and the Natural Environment Research Council (NERC)(NE/S002901/1) under the Newton Fund program.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to conceptualizing and designing the study. Yenushi K. De Silva carried out the methodology, formal analysis using software, and original draft writing. Mukand S. Babel, Abayomi Abatan, Dibesh Khadka, and Jothiganesh Shanmugasundaram supervised the study and provided their valuable feedback. After, Yenushi K. De Silva prepared the original draft paper, all the authors reviewed and commented while editing the necessary parts.

Corresponding author

Correspondence to Mukand S. Babel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33861 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, Y.K., Babel, M.S., Abatan, A.A. et al. Evaluation of ENSO in CMIP5 and CMIP6 models and its significance in the rainfall in Northeast Thailand. Theor Appl Climatol 154, 881–906 (2023). https://doi.org/10.1007/s00704-023-04585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04585-z

Navigation