Skip to main content

Advertisement

Log in

Understanding the double peaked El Niño in coupled GCMs

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Coupled general circulation models (CGCMs) simulate a diverse range of El Niño–Southern Oscillation behaviors. “Double peaked” El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15. doi:10.1007/s00382-006-0119-7

    Article  Google Scholar 

  • Allan R (2000) El Niño and the Southern Oscillation: multiscale variability, global and regional impacts. Cambridge University Press, Cambridge

    Google Scholar 

  • Allan RJ, Reason CJC, Lindesay JA, Ansell TJ (2003) Protracted ENSO episodes and their impacts in the Indian Ocean region. Deep Sea Res II Top Stud Oceanogr 50(12–13):2331–2347. doi:10.1016/S0967-0645(03)00059-6

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):3–8. doi:10.1029/2010GL046270

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):1–27. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7–8):1999–2018. doi:10.1007/s00382-013-1783-z

    Article  Google Scholar 

  • Belmadani A, Dewitte B, An SI (2010) ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J Clim 23(12):3181–3204. doi:10.1175/2010JCLI2830.1

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-M—part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720. doi:10.5194/GMD-6-687-2013

    Article  Google Scholar 

  • Bi D, Dix M, Marsland SJ, O’Farrell S, Rashid HA, Uotila P, Hirst AC, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies SM, Hill R, Harris C, Puri K (2013a) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Google Scholar 

  • Bi D, Marsland SJ, Uotila P, O’Farrell S, Fiedler R, Sullivan A, Griffies SM, Zhou X, Hirst AC (2013b) ACCESS-OM: the ocean and sea-ice core of the ACCESS coupled model. Aust Meteorol Oceanogr J 63:213–232

    Google Scholar 

  • Boucharel J, Dewitte B, du Penhoat Y, Garel B, Yeh SW, Kug JS (2011) ENSO nonlinearity in a warming climate. Clim Dyn 37:2045–2065. doi:10.1007/s00382-011-1119-9

    Article  Google Scholar 

  • Brown JN, Langlais C, Maes C (2013) Zonal structure and variability of the western Pacific dynamic warm pool edge in CMIP5. Clim Dyn 42(11–12):3061–3076. doi:10.1007/s00382-013-1931-5

    Google Scholar 

  • Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res 118:1–16. doi:10.1002/jgrc.20335

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298. doi:10.1016/j.ocemod.2006.02.004

    Article  Google Scholar 

  • Capotondi A, Ham YG, Wittenberg AT, Kug JS (2015a) Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Var 13(1):21–25

    Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese BS, Guilyardi E, Jin FF, Karnauskas KB, Kirtman BP, Lee T, Schneider N, Xue Y, Yeh SW (2015b) Understanding ENSO diversity. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00117.1

    Google Scholar 

  • Choi J, An SI, Yeh SW (2012) Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim Dyn 38(11–12):2631–2644. doi:10.1007/s00382-011-1186-y

    Article  Google Scholar 

  • Choi K, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim 26:9462–9476. doi:10.1175/JCLI-D-13-00045.1

    Article  Google Scholar 

  • Choi KY, Vecchi GA, Wittenberg AT (2015) Nonlinear zonal wind response to ENSO in the CMIP5 models: roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J Clim 28:8556–8573. doi:10.1175/JCLI-D-15-0211.1

    Article  Google Scholar 

  • Clarke AJ, Wang J, Van Gorder S (2000) A simple warm-pool displacement ENSO model. J Phys Oceanogr 30:1679–1691

    Article  Google Scholar 

  • Collins M, An SI, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi GA, Wittenberg AT (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–367. doi:10.1038/NGEO868

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire a, Woodward S (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and Pacific decadal variability in the Community Climate System Model version 4. J Clim 25:2622–2651. doi:10.1175/JCLI-D-11-00301.1

    Article  Google Scholar 

  • DiNezio PN, Kirtman BP, Clement AC, Lee SK, Vecchi GA, Wittenberg AT (2012) Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J Clim 24:7399–7420. doi:10.1175/JCLI-D-11-00494.1

    Article  Google Scholar 

  • Dix M, Vohralik P, Bi D, Rashid H, Marsland S, OFarrell S, Uotila P, Hirst T, Kowalczyk E, Sullivan A, Yan H, Franklin C, Sun Z, Watterson I, Collier M, Noonan J, Stevens L, Uhe P, Puri K (2014) The ACCESS coupled model: documentation of core CMIP5 simulations and initial results. Aust Meteorol Oceanogr J 63:83–99

    Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Sa Klein, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519. doi:10.1175/2011JCLI3955.1

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi:10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665. doi:10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Fogli PG, Manzini E, Vichi M, Alessandri A, Patara L, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV—CMCC Carbon (ICC): a carbon cycle earthsystem model. Technical report April, Centro Euro-Mediterraneo Per I CambiamentiClimatici

  • Gebbie G, Eisenman I, Wittenberg AT, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64:3281–3295. doi:10.1175/JAS4029.1

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24(19):4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA). J Geophys Res. doi:10.1029/2010JC006695

    Google Scholar 

  • Gillett NP, Arora VK, Flato GM, Scinocca JF, Von Salzen K (2012) Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophys Res Lett 39(1):1–5. doi:10.1029/2011GL050226

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi:10.1002/jame.20038

    Article  Google Scholar 

  • Graham FS, Brown JN, Langlais C, Marsland SJ, Wittenberg AT, Holbrook NJ (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. Clim Dyn. doi:10.1007/s00382-014-2062-3

    Google Scholar 

  • Graham FS, Brown JN, Wittenberg AT, Holbrook NJ (2015) Reassessing conceptual models of ENSO. J Clim 28:9121–9142. doi:10.1175/JCLI-D-14-00812.1

    Article  Google Scholar 

  • Griffies SM (2009) Elements of MOM4p1: GFDL Ocean Group. Technical report 6, NOAA Geophysical Fluid Dynamics Laboratory

  • Griffies SM, Winton M, Donner LJ, Horowitz LW, M DS, Farneti R, Gnanadesikan A, Hurlin WJ, Lee HC, Palter JB, Samuels BL, Wittenberg AT, Wyman B, Yin J, Zadeh N (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24(13):3520–3544. doi:10.1175/2077JCLI3964.1

    Article  Google Scholar 

  • Griffies SM, Winton M, Samuels BL, Danabasoglu G, Yeager SG, Marsland SJ, Drange H, Bentsen M (2012) Datasets and protocol for the CLIVAR WGOMD Coordinated Ocean-Sea Ice Reference Experiments (COREs). WCRP Report No. 21/2012, p 21

  • Guilyardi E, Wittenberg AT, Fedorov AV, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models. Bull Am Meteorol Soc 90:325–340. doi:10.1175/2008BAMS2387.1

    Article  Google Scholar 

  • Guilyardi E, Cai W, Collins M, Fedorov AV, Jin FF, Kumar A, Sun DZ, Wittenberg AT (2012) New strategies for evaluating ENSO processes in climate models. Bull Am Meteorol Soc 93:235–238. doi:10.1175/BAMS-D-11-00106.1

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg AT (2013) A first look at ENSO in CMIP5. Clivar Exch 17(1):29–32

    Google Scholar 

  • Guilyardi E, Wittenberg AT, Balmaseda M, Cai W, Collins M, McPhaden MJ, Watanabe M, Yeh SW (2015) ENSO in a changing climate–meeting summary of the 4th CLIVAR workshop on the evaluation of ENSO processes in climate models. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-15-00287.1

    Google Scholar 

  • Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398. doi:10.1007/s00382-011-1157-3

    Article  Google Scholar 

  • Holbrook NJ, Li J, Collins M, Di Lorenzo E, Jin FF, Knutson TR, Latif M, Li C, Power SB, Huang R, Wu G (2014) Decadal climate variability and cross-scale interactions: ICCL 2013 Expert Assessment Workshop. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00201.1

    Google Scholar 

  • Huang BH, Xue Y, Zhang D, Kumar A, McPhaden MJ (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual timescales. J Clim 23:4901–4925

    Article  Google Scholar 

  • Huang BH, Xue Y, Wang H, Wang W, Kumar A (2011) Mixed layer heat budget of the El Niño in NCEP climate forecast system. Clim Dyn. doi:10.1007/s00382-011-1111-4

    Google Scholar 

  • Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  • Jia L, Yang X, Vecchi GA, Gudgel RG, Delworth TL, Rosati A, Stern WF, Wittenberg AT, Krishnamurthy L, Zhang S, Msadek R, Kapnick S, Underwood SD, Zeng F, Anderson WG, Balaji V, Dixon KW (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062. doi:10.1175/JCLI-D-14-00112.1

    Article  Google Scholar 

  • Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26(13):4816–4827. doi:10.1175/JCLI-D-12-00649.1

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kim ST, Jin FF (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36:1609–1627. doi:10.1007/s00382-010-0872-5

    Article  Google Scholar 

  • Kim ST, Cai W, Jin FF, Yu JY (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42(11–12):3313–3321. doi:10.1007/s00382-013-1833-6

    Article  Google Scholar 

  • Krishnamurthy L, Vecchi GA, Msadek R, Wittenberg AT, Delworth TL, Zeng F (2015) The seasonality of the Great Plains Low-Level Jet and ENSO relationship. J Clim 28:4825–4544. doi:10.1175/JCLI-D-14-00590.1

    Article  Google Scholar 

  • Krishnamurthy L, Vecchi GA, Msadek R, Murakami H, Wittenberg AT, Zeng F (2016) Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic. J Clim 29:2375–2394. doi:10.1175/JCLI-D-0468.1

    Article  Google Scholar 

  • Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239. doi:10.1175/2009JCLI3293.1

    Article  Google Scholar 

  • Kumar BP, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38(7–8):1521–1543

    Article  Google Scholar 

  • Latif M, Semenov VA, Park W (2015) Super El Niños in response to global warming in a climate model. Clim Dyn 132:489–500. doi:10.1007/s10584-015-1439-6

    Google Scholar 

  • Lee SK, DiNezio PN, Chung ES, Yeh SW, Wittenberg AT, Wang C (2014) Spring persistence, transition and resurgence of El Niño. Geophys Res Lett 41(23):8578–8585. doi:10.1002/2014GL062484

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37(L14):603. doi:10.1029/2010GL0440007

    Google Scholar 

  • Leloup J, Lengaigne M, Boulanger JP (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: the shortwave flux feedback. J Clim 25(12):4275–4293. doi:10.1175/JCLI-D-11-00178.1

    Article  Google Scholar 

  • Long MC, Lindsay K, Peacock S, Moore JK, Doney SC (2013) Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J Clim 26(18):6775–6800. doi:10.1175/JCLI-D-12-00184.s1

    Article  Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverweil ID, Halloran P, Hardiman S, Hinton TJ, Jones CD, McLaren A, O’Connor F, Rodriguez J, Woodward S et al (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev Discuss 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Meehl GA, Teng H, Branstator G (2006) Future changes of El Niño in two coupled climate models. Clim Dyn 26(6):549–566. doi:10.1007/s00382-005-0098-0

    Article  Google Scholar 

  • Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26(17):6287–6308. doi:10.1175/JCLI-D-12-00572.1

    Article  Google Scholar 

  • Miller RL (2014) CMIP5 historical simulations (1850–2012) with GISSModelE2. J Adv Model Earth Syst. doi:10.1002/2013MS000266

    Google Scholar 

  • Ogata T, Xie SP, Wittenberg AT, Sun DZ (2013) Interdecadal amplitude modulation of El Niño/Southern Oscillation and its impacts on tropical Pacific decadal variability. J Clim 26:7280–7297. doi:10.1175/JCLI-D-12-00415.1

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274(5292):1486–1489

    Article  Google Scholar 

  • Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277(5326):663–666. doi:10.1126/science.277.5326.663

    Article  Google Scholar 

  • Qiao F, Song Z, Bao Y, Song Y, Shu Q, Huang C, Zhao W (2013) Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res Oceans 118(9):4514–4524. doi:10.1002/jgrc.20327

    Article  Google Scholar 

  • Rashid HA, Hirst AC (2015) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Clim Dyn. doi:10.1007/s00382-015-2633-y

    Google Scholar 

  • Rashid HA, Hirst AC, Dix M (2013a) Atmospheric circulation features in the ACCESS model simulations for CMIP5: historical simulation and future projections. Aust Meteorol Oceanogr J 63:145–160

    Google Scholar 

  • Rashid HA, Sullivan A, Hirst AC, Bi D, Marsland SJ (2013b) Evaluation of El Niño–Southern Oscillation in the ACCESS coupled model simulations for CMIP5. Aust Meteorol Oceanogr J 63(1):161–180

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos Chem Phys 12(14):6377–6404. doi:10.5194/acp-12-6377-2012

    Article  Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen Yh, Cheng Y, Clune TL, Genio AD, Fainchtein RD, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, Legrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6:141–184. doi:10.1002/2013MS000265

    Article  Google Scholar 

  • Smith NR (1995) An improved system for tropical ocean subsurface temperature analyses. J Atmos Ocean Technol 12:850–870

    Article  Google Scholar 

  • Taschetto AS, Sen Gupta A, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885. doi:10.1175/JCLI-D-13-00437.1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777

    Article  Google Scholar 

  • Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdiscip Rev Clim Change 1:260–270. doi:10.1002/wcc.33

    Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006a) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature. doi:10.1038/nature04744

    Google Scholar 

  • Vecchi GA, Wittenberg AT, Rosati A (2006b) Reassessing the role of stochastic forcing in the 1997–8 El Niño. Geophys Res Lett 33(L01):706. doi:10.1029/2005GL024738

    Google Scholar 

  • Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28:1071–1088

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J Phys Oceanogr 31(7):1649–1675

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y, Melia D, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’Ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe M, Kug JS, Jin FF, Collins M, Ohba M, Wittenberg AT (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett. doi:10.1029/2012LG053305

    Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM: model description and basic results of CMIP5-20c3m experiments. Geosci Model Develop Discuss 4(2):1063–1128. doi:10.5194/gmdd-4-1063-2011

    Article  Google Scholar 

  • Wittenberg AT (2004) Extended wind stress analyses for ENSO. J Clim 17:2526–2540. doi:10.1175/1520-0442(2004)017<2526:EWSAFE>2.0.CO;2

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36(L12):702. doi:10.1175/JCLI3631.1

    Google Scholar 

  • Wittenberg AT (2015) Low-frequency variations of ENSO. US CLIVAR Var 13(1):26–31

    Google Scholar 

  • Wittenberg AT, Rosati A, Lau NC, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722. doi:10.1175/JCLI3631.1

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Delworth TL, Vecchi GA, Zeng F (2014) ENSO modulation: is it decadally predictable? J Clim 27:2667–2681. doi:10.1175/JCLI-D-13-00577.1

    Article  Google Scholar 

  • Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34(1):123–147. doi:10.1007/s00382-008-0487-2

    Article  Google Scholar 

  • Yang X, Vecchi GA, Gudgel RG, Delworth TL, Zhang S, Rosati A, Jia L, Stern WF, Wittenberg AT, Kapnick S, Msadek R, Underwood SD, Zeng F, Anderson W, Balaji V (2015) Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J Clim 28:3592–3611. doi:10.1175/JCLI-D-14-00517.1

    Article  Google Scholar 

  • Yeh SW, Park YG, Kirtman BP (2006) ENSO amplitude changes in climate change commitment to atmospheric \(\text{ CO }_2\) doubling. Geophys Res Lett. doi:10.1029/2005GL025653

    Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yeh SW, Kug JS, An SI (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50(1):69–81. doi:10.1007/s13143-014-0028-3

    Article  Google Scholar 

  • Yu JY, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33(8):2105–2112. doi:10.1002/joc.3575

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meterological Research Institute: MRI-CGCM3. J Meteorol Soc Jpn 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Zhang Q, Kumar A, Xue Y, Wang W, Jin FF (2007) Analysis of the ENSO cycle in the NCEP coupled forecast model. J Clim 40:1265–1284

    Article  Google Scholar 

  • Zhang W, Vecchi GA, Murakami H, Delworth TL, Wittenberg AT, Rosati A, Underwood SD, Anderson W, Harris L, Gudgel R, Lin SJ, Villarini G, Chen JH (2016) Improved simulation of tropical cyclone responses to ENSO in the western north Pacific in the high-resolution GFDL HiFLOR coupled climate model. J Clim 29:1391–1415. doi:10.1175/JCLI-D-15-0475.1

    Article  Google Scholar 

Download references

Acknowledgments

The ACCESS model is supported by the Australian Government Department of the Environment, the Bureau of Meteorology and CSIRO through the Australian Climate Change Science Program, and the NCI Facility at the ANU. FSG was supported by an Australian Postgraduate Award and a CSIRO Wealth from Oceans scholarship. This research makes a contribution to the ARC Centre of Excellence for Climate System Science. The authors thank two anonymous reviewers for their constructive comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicity S. Graham.

Appendices

Appendix 1: The mean state and biases in ACCESS-CM1.3

The mean SST from ACCESS-CM1.3 and SST bias, with respect to the Bureau of Meteorology Research Centre (BMRC) SST reanalyses (Smith 1995) over the period 1980–2004, are illustrated in Fig. 10. ACCESS-CM1.3 is up to \(1\,^{\circ }\hbox {C}\) cooler than the reanalysis data in the equatorial Pacific cold tongue region (\(180{-}100^{\circ }\hbox {E}\)), and up to \(2\,^{\circ }\hbox {C}\) warmer east of \(100^{\circ }\hbox {W}\) along the coast of South America. ACCESS-CM1.3 displays a warm bias in the South Pacific, in the region of the South Pacific Convergence Zone, and in the tropical North Pacific (\(5^{\circ }\hbox {N}\), \(160{-}110^{\circ }\hbox {W}\)).

Fig. 10
figure 10

Mean sea surface temperature over the period 1980–2004 (shading) in the a BMRC reanalyses, and b ACCESS-CM1.3. Data are in units of \(^{\circ }\hbox {C}\) and the contour interval is \(0.5\,^{\circ }\hbox {C}\)

The standard deviation of tropical Pacific \(SST'\) is indicative of the spatial diversity in ENSO variability (Fig. 2). Variability in the eastern equatorial Pacific in ACCESS-CM1.3 is weaker than in the reanalysis data (the difference in standard deviation is up to \(0.6\,^{\circ }\hbox {C}\) at approximately \(100^{\circ }\hbox {W}\)), including \({<}0.3\,^{\circ }\hbox {C}\) from \(160{-}140^{\circ }\hbox {W}\), and slightly stronger (\({>}0.2\,^{\circ }\hbox {C}\)) west of \(180^{\circ }\) longitude in a secondary western peak. Note that the standard deviation of \(SST'\) illustrated in Fig. 2 is qualitatively similar to the leading mode of an EOF analysis of ACCESS-CM1.3 \(SST'\), which also displays the double peaked pattern of warming and represents 44 % of the \(SST'\) variability in ACCESS-CM1.3 (figure not shown).

The annual means of the equatorial surface heat fluxes for ACCESS-CM1.3 are compared with those from the Objectively Analyzed air-sea Fluxes (OAFlux; provided by the Woods Hole Oceanographic Institute (WHOI) OAFlux project, available at http://oaflux.whoi.edu), the TropFlux reanalyses (Kumar et al. 2012), and the Coordinated Ocean-ice Reference Experiments version 2 (CORE-II, which are used to force ACCESS-OM; Griffies et al. 2012) in Fig. 11. The annual mean equatorial longwave radiation and sensible heat flux simulated by ACCESS-CM1.3 are within the range of uncertainty estimated from OAFlux, TropFlux, and CORE-II. Latent heat fluxes in ACCESS-CM1.3 are up to \(46\,\hbox {W m}^{-2}\) less than those of the reanalyses, particularly in the eastern equatorial Pacific. Equatorial shortwave radiation values simulated by ACCESS-CM1.3 in boreal winter are up to \(38\,\hbox {W m}^{-2}\) different from TropFlux.

Fig. 11
figure 11

Annual mean of equatorial surface heat flux variables—namely, shortwave, sensible, latent, longwave, and net heat fluxes—from ACCESS-CM1.3 (blue), the CORE-II reanalyses from ACCESS-OM (red), the OAFlux reanalyses (black solid), and the TropFlux reanalyses (black dashed). Data are averaged between \(2^{\circ }\hbox {S}\) and \(2^{\circ }\hbox {N}\) and are in units of \(\hbox {W m}^{-2}\)

The mean state of the tropical Pacific MLD in ACCESS-CM1.3 and bias with respect to the UK Met Office (UKMO) subsurface ocean temperature and salinity data (Ingleby and Huddleston 2007) over the period 1980–2005 are compared in Fig. 12. The ACCESS-CM1.3 MLDs are up to 50 m deeper than the UKMO MLDs in bands stretching between \(170^{\circ }\hbox {E}\) and \(150^{\circ }\hbox {W}\) north and south of the equator.

Fig. 12
figure 12

Mean mixed layer depth (MLD) over the period 1980–2005 (shading) in the a UK Met Office (UKMO) reanalyses, and b ACCESS-CM1.3. The MLD is defined as the depth at which the density layer \(\sigma _t\) deviates from surface values by \(0.125\,\hbox {kg m}^{-3}\). Contours show the bias in mean mixed layer depth with respect to the UKMO data. Data are in units of m and the contour interval is 10 m

Appendix 2: Significance of the double peaked El Niño event in ACCESS-CM1.3

Here, we investigate whether the composited double peaked El Niño events are significantly different from the composited eastern Pacific El Niño events. First, the double peaked and eastern Pacific El Niño events from the PiControl simulation of ACCESS-CM1.3 are randomly separated into two groups, groups a and b, and composited. We name these composites \(\mu _{x}\) of sample size \(n_{x}\), where \(x\in \{DP1.3a, DP1.3b, EP1.3a, EP1.3b\}\). We also consider the double peaked El Niño events from the PiControl simulation of ACCESS-CM1.0 and separate them into two composites—\(\mu _{DP1.0a}\) and \(\mu _{DP1.0b}\)—with sample sizes \(n_{DP1.0a}\) and \(n_{DP1.0b}\), respectively.

The variable for testing the significance of the difference between composites is the Student’s t-distribution:

$$t= \frac{\widehat{\mu _x} - \widehat{\mu _y}}{S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}, \hbox {and}$$
(4)
$$S^2= \frac{(n_x - 1)\widehat{\sigma _x^2}+(n_y - 1)\widehat{\sigma _y^2}}{n_x + n_y - 2},$$
(5)

where \(n_x + n_y - 2\) is the number of independent observations for the parameter t, and x and y represent the composited El Niño events being tested. The significance value (p value) from each test case is calculated using a two-sided Student’s t-test.

We define a simple test to establish the significance of the El Niño composite events: namely, the double peaked and eastern Pacific El Niño events are significantly different if the following conditions are satisfied during the evolution of the El Niño event (i.e., the first 24 months of the composite):

Test 1 :

the differences between the DP1.3a and EP1.3a composites are greater than the differences between the DP1.3a and DP1.3b composites;

Test 2 :

the differences between the DP1.3b and EP1.3b composites are greater than the differences between the EP1.3a and EP1.3b composites;

Test 3 :

the differences between DP1.3a events from ACCESS-CM1.3 and DP1.0a events from ACCESS-CM1.0 are greater than the differences between the DP1.3a and DP1.3b events from ACCESS-CM1.3; and

Test 4 :

the differences between DP1.3b events from ACCESS-CM1.3 and DP1.0b events from ACCESS-CM1.0 are greater than the differences between DP1.0a and DP1.0b events from ACCESS-CM1.0.

The random sampling is repeated 100 times and median values for the differences between the composites, t, and p across the samples are calculated. The results for tests 1–4 are illustrated in Fig. 13.

Fig. 13
figure 13

Simple significance testing of \(SST'\) composites from randomly selected double peaked and eastern Pacific El Niño events in ACCESS-CM1.3 (DP1.3a, DP1.3b, EP1.3a, and EP1.3b, respectively) and double peaked El Niño events in in ACCESS-CM1.0 (DP1.0a, DP1.0b, respectively) for the 3 years surrounding El Niño events. Data displayed are median t probability density function values calculated from 100 random samples of the test groups a and b. The first column in each row is calculated by subtracting the third column from the second. Differences greater than one standard deviation from the mean are indicated with stippling (‘.’), and differences significant at the 95 % confidence interval with crosses (‘+’). In each case, significance is calculated using a two-sided Student’s t test. The contour interval is 0.1

For test 1, the median difference between DP1.3a and EP1.3a is approximately \({\pm }2\) times greater than the difference between DP1.3a and DP1.3b, which is in the range \([-0.37, 0.19]\,^{\circ }\hbox {C}\) for the 100 samples generated. The differences in DP1.3a and EP1.3a are greater than one standard deviation across the western-central equatorial Pacific during the 12 months prior to the peak of the El Niño event. The greatest differences in the eastern equatorial Pacific occur during the 2 months prior to and 8 months following the peak of the El Niño event. Differences between DP1.3a and DP1.3b across the 100 samples are not statistically significant. A similar result is found for test 2. Even in the PiControl simulations, the sample size of eastern Pacific events in ACCESS-CM1.3 is relatively small – 10 in total – such that the difference between EP1.3a and EP1.3b is likely to be biased by individual events.

The results of tests 3 and 4 illustrate that double peaked events from the ACCESS-CM1.3 model are more similar to each other than to events from ACCESS-CM1.0. Again, the median difference between double peaked events within each model simulation is small (within the range \([-0.22, 0.40]\,^{\circ }\hbox {C}\) for the ACCESS-CM1.0 simulation), while the median differences in double peaked events between the two models are close to \({\pm }2\,^{\circ }\hbox {C}\) during the development of the El Niño event throughout the equatorial Pacific and in the western and eastern Pacific during the decay periods of the El Niño event (the differences are greater than one standard deviation from the mean in each case). These results provide evidence that the composite double peaked and eastern Pacific El Niño events from ACCESS-CM1.3 are sufficiently different to ensure significance in the trends analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, F.S., Wittenberg, A.T., Brown, J.N. et al. Understanding the double peaked El Niño in coupled GCMs. Clim Dyn 48, 2045–2063 (2017). https://doi.org/10.1007/s00382-016-3189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3189-1

Keywords

Navigation