Skip to main content

Advertisement

Log in

Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Due to the importance that the El Niño-Southern Oscillation (ENSO) has on rainfall over the tropical Americas, future changes in ENSO characteristics and teleconnections are important for regional hydroclimate. Projected changes to the ENSO mean state and characteristics, and the resulting impacts on rainfall anomalies over Central America, Colombia, and Ecuador during the twenty-first century are explored for several forcing scenarios using a suite of coupled atmosphere–ocean global climate models (AOGCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Mean-state warming of eastern tropical Pacific sea surface temperatures, drying of Central America and northern Colombia, and wetting of southwest Colombia and Ecuador are consistent with previous studies that used earlier versions of the AOGCMs. Current and projected future characteristics of ENSO (frequency, duration, amplitude) show a wide range of values across the various AOGCMs. The magnitude of ENSO-related rainfall anomalies are currently underestimated by most of the models, but the model ensembles generally simulate the correct sign of the anomalies across the seasons around the peak ENSO effects. While the models capture the broad present-day ENSO-related rainfall anomalies, there is not a clear sense of projected future changes in the precipitation anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524

    Google Scholar 

  • Amador JA (1998) A climatic feature of tropical Americas: the trade wind easterly jet. Top Meteorol Oceanogr 5:91–102

    Google Scholar 

  • An SI, Kug JS, Ham YG, Kang IS (2008) Successive modulation of ENSO to the future greenhouse warming. J Clim 21:3–21. doi:10.1175/2007JCLI1500.1

    Google Scholar 

  • Boulanger JP, Martinez F, Segura EC (2007) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271. doi:10.1007/s00382-006-0182-0

    Google Scholar 

  • Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim Change 4:111–116. doi:10.1038/NCLIMATE2100

    Google Scholar 

  • Chen AA, Taylor MA (2002) Investigating the link between early season Caribbean rainfall and the El Niño + 1 year. Int J Climatol 22:87–106. doi:10.1002/joc.711

    Google Scholar 

  • Chiang JCH, Kushnir Y, Zebiak SE (2000) Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys Res Lett 27:3687–3690

    Google Scholar 

  • Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res 107:D14004. doi:10.1029/2000JD000307

    Google Scholar 

  • Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215. doi:10.1007/s00382-010-0912-1

    Google Scholar 

  • Chou C, Chen CA, Tan PH, Chen KT (2012) Mechanisms for global warming impacts on precipitation frequency and intensity. J Clim 25:3291–3306. doi:10.1175/JCLI-D-11-00239.1

    Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397. doi:10.1038/ngeo868

    Google Scholar 

  • Curtis S, Hastenrath S (1995) Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J Geophys Res 100(C8):15835–15847

    Google Scholar 

  • Deser C, Phillips AS, Tomas RA, Okumura Y, Alexander MA, Capotondi A, Scott JD, Kwon Y-O, Ohba M (2012) ENSO and pacific decadal variability in community climate system model version 4. J Clim 25:2622–2651. doi:10.1175/JCLI-D-11-00301.1

    Google Scholar 

  • DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee SK (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892. doi:10.1175/2009JCLI2982.1

    Google Scholar 

  • Durán-Quesada AM, Gimeno L, Amador JA, Nieto R (2010) Moisture sources for Central America: identification of moisture sources using a Lagrangian analysis technique. J Geophys Res 115:D05103. doi:10.1029/2009JD012455

    Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945

    Google Scholar 

  • Gastineau G, Li L, Le Treut H (2009) The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Clim 22:3993–4013

    Google Scholar 

  • Giannini A, Chiang JCH, Cane MA, Kushnir Y, Seager R (2001) The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J Clim 14:4530–4544

    Google Scholar 

  • Gianninni A, Kushnir AY, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311

    Google Scholar 

  • Giorgi F (2006) Climate change hot spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Google Scholar 

  • Gouirand I, Moron V, Hu Z-Z, Jha B (2013) Influence of the warm pool and cold tongue El Niños on the following Caribbean rainy season rainfall. Clim Dyn. doi:10.1007/s00382-013-1753-5

    Google Scholar 

  • Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25:537–554. doi:10.1007/s00477-010-0420-1

    Google Scholar 

  • Grimm AM, Ambrizzi T (2009) Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. Dev Paleoenviron Res 14:159–191. doi:10.1007/978-90-481-2672-9_7

    Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. doi:10.1175/2008JCLI2429.1

    Google Scholar 

  • Gu G, Adler RF (2006) Interannual rainfall variability in the tropical Atlantic region. J Geophys Res 111:D02106. doi:10.1029/2005JD005944

    Google Scholar 

  • Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348. doi:10.1007/s00382-005-0084-6

    Google Scholar 

  • Hastenrath S (1976) Variations in low-latitude circulation and extreme climatic events in the tropical Americas. J Atmos Sci 33:202–215

    Google Scholar 

  • Hastenrath S (2002) The intertropical convergence zone of the eastern Pacific revisited. Int J Climatol 22:347–356

    Google Scholar 

  • Hastenrath S, Greischar L (1993) Circulation mechanisms related to northeast Brazil rainfall anomalies. J Geophys Res 98(D3):5093–5102

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/JCLI3990.1

    Google Scholar 

  • Herceg Bulić I, Branković Č, Kucharski F (2012) Winter ENSO teleconnections in a warmer climate. Clim Dyn 38:1593–1613. doi:10.1007/s00382-010-0987-8

    Google Scholar 

  • Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. doi:10.1016/j.hydrol.2013.05.004

    Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Google Scholar 

  • Horel JD, Hahmann AN, Geisler JE (1989) An investigation of the annual cycle of convective activity over the tropical Americas. J Clim 2:1388–1403

    Google Scholar 

  • Hoyos I, Baquero-Bernal A, Jacob D, Rodríguez BA (2013) Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim Dyn 40:1985–2003. doi:10.1007/s00382-012-1487-9

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. doi:10.1007/s00382-011-1099-9

    Google Scholar 

  • Karnauskas KB (2013) Can we distinguish canonical El Niño from Modoki? Geophys Res Lett. doi:10.1002/grl.51007

    Google Scholar 

  • Karnauskas KB, Busalacchi AJ (2009) The role of SST in the East Pacific warm pool in the interannual variability of Central American rainfall. J Clim 22:2605–2623

    Google Scholar 

  • Leloup J, Clement A (2009) Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys Res Lett 36:L14802. doi:10.1029/2009GL038609

    Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Google Scholar 

  • Lyon B (2003) Enhanced seasonal rainfall in northern Venezuela and the extreme events of December 1999. J Clim 16:2302–2306

    Google Scholar 

  • Lyon B, Barnston AG (2005) ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J Clim 18:5095–5109

    Google Scholar 

  • Magaña V, Amador J, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588

    Google Scholar 

  • Mapes BE, Warner TT, Xu M, Negri AJ (2003) Diurnal patterns of rainfall in northwestern South America. Part I: observations and context. Mon Weather Rev 131:799–812

    Google Scholar 

  • Marengo JA, Ambrizzi T, da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. doi:10.1007/s00382-009-0721-6

    Google Scholar 

  • Marengo JA, Chan Chou S, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. doi:10.1007/s00382-011-1155-5

    Google Scholar 

  • Martin ER, Schumacher C (2011) The Caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. J Clim 24:5935–5950. doi:10.1175/JCLI-D-11-00134.1

    Google Scholar 

  • McGlone D, Vuille M (2012) The associations between El Niño-Southern Oscillation and tropical South American climate in a regional climate model. J Geophys Res 117:D06105. doi:10.1029/2011JD017066

    Google Scholar 

  • Meehl GA, Teng H, Branstator G (2006) Future changes of El Niño in two global coupled climate models. Clim Dyn 26:549–566. doi:10.1007/s00382-005-0098-0

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RFJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Google Scholar 

  • Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027. doi:10.1175/JCLI3834

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Google Scholar 

  • Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments. J Clim 24:1801–1820. doi:10.1175/2010JCLI3874.1

    Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Google Scholar 

  • Müller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi:10.1007/s00382-007-0357-3

    Google Scholar 

  • Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115

    Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843

    Google Scholar 

  • Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale oceanic-atmospheric phenomena. J Clim 10:2690–2702

    Google Scholar 

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys Res Lett 27:1675–1678

    Google Scholar 

  • Poveda G, Mesa OJ, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo PA, Toro VG, Alvaraz JF (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Wea Rev 133:228–240

    Google Scholar 

  • Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclim Palaeoecol 234:3–27. doi:10.1016/j.palaeo.2005.10.031

    Google Scholar 

  • Poveda G, Álvarez DM, Rueda ÓA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249. doi:10.1007/s00382-010-0931-y

    Google Scholar 

  • Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50:1–21. doi:10.1002/2013WR014087

    Google Scholar 

  • Power SB, Smith IN (2007) Weakening of the Walker circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed? Geophys Res Lett 34:L18702. doi:10.1029/2007GL030854

    Google Scholar 

  • Power SB, Delage F, Colman R, Moise A (2012) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809. doi:10.1175/JCLI-D-11-00354.1

    Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature. doi:10.1038/nature12580

    Google Scholar 

  • Rasmusson EM, Mo K (1993) Linkages between 200-mb tropical and extratropical circulation anomalies during the 1986–1989 ENSO cycle. J Clim 6:595–616

    Google Scholar 

  • Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571. doi:10.1007/s00382-007-0359-1

    Google Scholar 

  • Rauscher SA, Kucharski F, Enfield DB (2011) The role of regional SST warming variations in the drying of Meso-America in future climate projections. J Clim 24:2003–2016. doi:10.1175/2010JCLI3536.1

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D144407. doi:10.1029/2002JD002670

    Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Google Scholar 

  • Rogers JC (1988) Precipitation variability over the Caribbean and tropical Americas associated with the Southern Oscillation. J Clim 1:172–182

    Google Scholar 

  • Ropelewski CF, Bell MA (2008) Shifts in the statistics of daily rainfall in South America conditional on ENSO phase. J Clim 21:849–865. doi:10.1175/2007JCLI1617.1

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284

    Google Scholar 

  • Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation-precipitation relationships. J Clim 9:1043–1059

    Google Scholar 

  • Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern Oscillation. J Clim 13:2177–2194

    Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668. doi:10.1175/2010JCLI3655.1

    Google Scholar 

  • Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability? J Clim 25:3355–3372. doi:10.1175/JCLI-D-11-00363.1

    Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/s00382-007-0340-z

    Google Scholar 

  • Small RJO, de Szoeke SP, Xie SP (2007) The Central American midsummer drought: regional aspects and large-scale forcing. J Clim 20:4853–4873. doi:10.1175/JCLI4261.1

    Google Scholar 

  • Sörensson AA, Menéndez CG, Ruscica R, Alexander P, Samuelsson P, Willén U (2010) Projected precipitation changes in South America: a dynamical downscaling within CLARIS. Meteorol Z 19:347–355. doi:10.1127/0941-2948/2010/0467

    Google Scholar 

  • Stevenson S (2012) Significant changes to ENSO strength and impacts in the twenty-first century: results from CMIP5. Geophys Res Lett 39:L17703. doi:10.1029/2012GL052759

    Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl GA (2012a) Will there be a significant change to El Niño in the twenty-first century? J Clim 25:2129–2145. doi:10.1175/JCLI-D-11-00252.1

    Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M (2012b) Understanding the ENSO–CO2 link using stabilized climate simulations. J Clim 25:7917–7936. doi:10.1175/JCLI-D-11-00546.1

    Google Scholar 

  • Taylor MA, Enfield DB, Chen AA (2002) Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J Geophys Res 107:C93127. doi:10.1029/2001JC001097

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Timmermann AJ, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697. doi:10.1038/19505

    Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319

    Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

    Google Scholar 

  • van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340

    Google Scholar 

  • Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Interdiscip Rev Clim Change 1:260–270. doi:10.1002/wcc.33

    Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. doi:10.1038/nature04744

    Google Scholar 

  • Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014. doi:10.1007/s00382-009-0534-7

    Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759

    Google Scholar 

  • Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29:411–422. doi:10.1007/s00382-007-0243-z

    Google Scholar 

  • Watanabe M, Kug J-S, Jin F-F, Collins M, Ohba M, Wittenberg AT (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett 39:L20703. doi:10.1029/2012GL053305

    Google Scholar 

  • Waylen PR, Poveda G (2002) El Niño-Southern Oscillation and aspects of western South America hydro-climatology. Hydrol Process 16:1247–1260

    Google Scholar 

  • Waylen PR, Caviedes CN, Quesada ME (1996) Interannual variability of monthly precipitation in Costa Rica. J Clim 9:2606–2613

    Google Scholar 

  • Wu R, Kirtman BP (2011) Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST. Clim Dyn 37:1533–1550. doi:10.1007/s00382-010-0927-7

    Google Scholar 

  • Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Google Scholar 

  • Yasunari T (1987) Global structure of the El Niño/Southern Oscillation. Part I: El Niño composites. J Met Soc Jpn 65:67–80

    Google Scholar 

  • Yeh S-W, Park Y-G, Kirtman BP (2006) ENSO amplitude changes in climate change commitment to atmospheric CO2 doubling. Geophys Res Lett 33:L13711. doi:10.1029/2005GL025653

    Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–515. doi:10.1038/nature08316

    Google Scholar 

  • Yeh S-W, Ham Y-G, Lee J-Y (2012) Changes in the Tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J Clim 25:7764–7771. doi:10.1175/JCLI-D-12-00304.1

    Google Scholar 

  • Zhang M, Song H (2006) Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys Res Lett 33:L12701. doi:10.1029/2006GL025942

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Inter-American Development Bank through an Interagency Agreement with the National Science Foundation. The National Center for Atmospheric Research is funded in part by the National Science Foundation. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Helpful comments and suggestions we provided from three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Steinhoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinhoff, D.F., Monaghan, A.J. & Clark, M.P. Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs. Clim Dyn 44, 1329–1349 (2015). https://doi.org/10.1007/s00382-014-2196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2196-3

Keywords

Navigation