Skip to main content
Log in

Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study uses multiple sea surface temperature (SST) datasets to perform a parallel comparison of three super El Niños and their effects on the stratosphere. The results show that, different from ordinary El Niños, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Niño peak by more than 18 months. In the previous winter, relative to the mature phase of El Niño, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific–North America (PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Niños. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Niño winter, positive polar cap temperature anomalies and circumpolar easterly anomalies, though different in timing, are also observed in the mature winters of the three super El Niños. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.

摘要

本文使用多套海温资料(COBE, ERSST和HadISST), 海洋资料GODAS和大气再分析资料NCEP2, 比较研究了历史上三次超级 El Niño 事件(1982/83, 1997/98和2015/16)的演变特征, 同时关注了超级 El Niño 对北半球冬季平流层的可能影响. 三套海温数据一致表明, 超级 El Niño 事件与普通强度的 El Niño 事件明显不同, 即暖海温异常最早出现在热带西太平洋且超前超级 El Niño 事件达 18 个月之久. 作为超级 El Niño 事件的另一个先兆信号, 即北太平洋涛动(NPO)超前超级 El Niño 事件成熟位相达一年之久, NPO出现在超级 El Niño 成熟位相的前一年冬季. 发展成熟的超级 El Niño有利于热带外太平洋–北美遥相关(PNA)正位相维持. 值得注意的是, 三次超级 El Niño 成熟位相期间的 PNA 强度和纬向位置不尽相同. 1997/98年冬季PNA强度明显强于 1982/83和2015/16年, 这与1997/98年冬季印度洋降水明显偏少有关. 从再分析资料中滤除影响热带外平流层年际变化的 QBO, 热带印度洋热力异常和太阳循环等强迫因子后, 我们依然发现超级 El Niño 同年冬季平流层极冠区明显偏暖, 且绕极西风明显减弱. 三次事件的共同点在于, 伴随热带外 PNA响应, 热带外上传至平流层的行星波波动明显增多; 不同之处在于极涡异常偏弱偏暖的月份各不相同, 即 1982/83 和 2015/16 极涡偏暖时间明显偏向晚冬至春季. 异常偏暖偏弱的平流层极涡不仅发生在超级 El Niño 事件成熟位相冬季(尤其是晚冬), 而且还出现在 1982/83 和 1997/98 两次超级 El Niño 的次年冬季. 2015/16 超级 El Niño 是否也会对滞后一年的冬季平流层产生显著影响, 这有待进一步研究.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520- 0442(2002)015<2205:TABTIO>2.0.CO;2.

    Article  Google Scholar 

  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the northern hemisphere circulation during El Ñi˜o. J. Climate, 20, 3164–3189, doi: 10.1175/JCLI4156.1.

    Article  Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112(C11), C11007, doi: 10.1029/2006JC 003798.

    Article  Google Scholar 

  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo- Pacific basin. J. Climate, 15, 3427–3442, doi: 10.1175/1520- 0442(2002)015<3427:GASTTS>2.0.CO;2.

    Article  Google Scholar 

  • Cai, M., Y. Y. Yu, Y. Deng, H. M. van den Dool, R. C. Ren, S. Saha, X. R. Wu, and J. Huang, 2016: Feeling the pulse of the stratosphere: An emerging opportunity for predicting continental-scale cold-air outbreaks 1 month in advance. Bull. Amer. Meteor. Soc., 97, 1475–1489, doi: 10.1175/BAMS-D-14-00287.1.

    Article  Google Scholar 

  • Camp, C. D., and K. K. Tung, 2007: The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J. Atmos. Sci., 64, 1267–1283, doi: 10.1175/JAS3883.1.

    Article  Google Scholar 

  • Ding, R. Q., and J. P. Li, 2012: Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J. Climate, 25, 8177–8195, doi: 10.1175/JCLID-11-00739.1.

    Article  Google Scholar 

  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102(C1), 929–945, doi: 10.1029/96JC03296.

    Article  Google Scholar 

  • Farrara, J. D., C. R. Mechoso, and A.W. Robertson, 2000: Ensembles of AGCM two-tier predictions and simulations of the circulation anomalies during winter 1997-98. Mon. Wea. Rev., 128, 3589–3604, doi: 10.1175/1520-0493(2000)128<3589:EOATTP>2.0.CO;2.

    Article  Google Scholar 

  • Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112(D19), D19112, doi: 10.1029/2007JD008481.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.

    Article  Google Scholar 

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 1769–1786, doi: 10.1175/1520-0442(1997)010<1769: ENOLNA>2.0.CO;2.

    Article  Google Scholar 

  • Holton, J. R., and H. C. Tan, 1980: The Influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208, doi: 10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    Article  Google Scholar 

  • Horii, T., and K. Hanawa, 2004: A relationship between timing of El Niño onset and subsequent evolution. Geophys. Res. Lett., 31, L06304, doi: 10.1029/2003GL019239.

    Article  Google Scholar 

  • Hu, J. G., R. C. Ren, H. M. Xu., and S. Y. Yang, 2015: Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter. Science China Earth Sciences, 58, 615–627, doi: 10.1007/s11430-014-5008-z.

    Article  Google Scholar 

  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865–879, doi: 10.1002/joc.1169.

    Article  Google Scholar 

  • Jin, F. F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319, doi: 10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.

    Article  Google Scholar 

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    Article  Google Scholar 

  • Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107(D24), ACL 5-1–ACL 5-12, doi: 10.1029/2002JD002224.

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi: 10.1175/2008JCLI2624.1.

    Article  Google Scholar 

  • Kumar, A., and M. P. Hoerling, 1998: Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J. Geophys. Res., 103(D8), 8901–8907, doi: 10.1029/98JD00427.

    Article  Google Scholar 

  • Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz, 2006: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111(D6), D06108, doi: 10.1029/2005JD006283.

    Article  Google Scholar 

  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 1336–1353, doi: 10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    Article  Google Scholar 

  • Nicholson, S. E., 1997: Correction: An analysis of the ENSO signal in the tropical Atlantic and western Indian Oceans. Int. J. Climatol., 17, 1008, doi: 10.1002/(SICI)1097-0088(199707) 17:9<1008::AID-JOC117>3.0.CO;2-9.

    Article  Google Scholar 

  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. X. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 1425–1427, doi: 10.1126/science.aah4156.

    Article  Google Scholar 

  • Rao, J., and R.-C. Ren, 2014: Statistical characteristics of ENSO events in CMIP5 models. Atmos. Oceanic Sci. Lett., 7, 546–552, doi: 10.3878/AOSL20140055.

    Article  Google Scholar 

  • Rao, J., and R. C. Ren, 2016a: A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Climate Dyn., 46, 3689–3707, doi: 10.1007/s00382-015-2797-5.

    Article  Google Scholar 

  • Rao, J., and R. C. Ren, 2016b: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1.Observations. J. Geophys. Res., 121, 9000–9016, doi: 10.1002/2015JD024520.

    Article  Google Scholar 

  • Rao, J., and R. C. Ren, 2016c: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2.Model study with WACCM. J. Geophys. Res., 121, 9017–9032, doi: 10.1002/2015JD024521.

    Google Scholar 

  • Rao, J., R. C. Ren, and Y. Yang, 2015: Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci., 32, 952–966, doi: 10.1007/s00376-014-4192-2.

    Article  Google Scholar 

  • Rasmusson, E. M., X. L. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1, 71–96, doi: 10.1016/0924-7963(90)90153-2.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002 JD002670.

    Article  Google Scholar 

  • Ren, R. C., and M. Cai, 2006: Polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Adv. Atmos. Sci., 23, 884–900, doi: 10.1007/s00376-006-0884-6.

    Article  Google Scholar 

  • Ren, R. C., and J. G. Hu, 2014: An emerging precursor signal in the stratosphere in recent decades for the Indian summer monsoon onset. Geophys. Res. Lett., 41, 7391–7396, doi: 10.1002/2014GL061633.

    Article  Google Scholar 

  • Ren, R. C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345–1358, doi: 10.1007/s00382-011-1137-7.

    Article  Google Scholar 

  • Ren, R. C., J. Rao, G. X. Wu, and M. Cai, 2017: Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48, 2859–2879, doi: 10.1007/s00382-016-3238-9.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517, doi: 10.1175/JCLI3812.1.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16, 1495–1510, doi: 10.1175/1520-0442-16.10.1495.

    Article  Google Scholar 

  • Spencer, H., J. M. Slingo, and M. K. Davey, 2004: Seasonal predictability of ENSO teleconnections: The role of the remote ocean response. Climate Dyn., 22, 511–526, doi: 10.1007/s00382-004-0393-1.

    Article  Google Scholar 

  • Stephens, D. J., M. J. Meuleners, H. van Loon, M. H. Lamond, and N. P. Telcik, 2007: Differences in atmospheric circulation between the development of weak and strong warm events in the Southern Oscillation. J. Climate, 20, 2191–2209, doi: 10.1175/JCLI4131.1.

    Article  Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, doi: 10.1029/2001GL 013435.

    Article  Google Scholar 

  • Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial stratospheric Quasi-Biennial Oscillation in EOF phase space. J. Atmos. Sci., 50, 1751–1762, doi: 10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.

    Article  Google Scholar 

  • Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, L16814, doi: 10.1029/2007GL 030478.

    Google Scholar 

  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank?. Weather, 53, 315–324, doi: 0.1002/j.1477-8696.1998.tb06408.x.

    Article  Google Scholar 

  • Xie, F., J. Li., W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys. Discuss., 12, 5259–5273, doi: 10.5194/acp-12-5259-2012.

    Article  Google Scholar 

  • Xu, J. J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. J. Climate, 14, 418–433, doi: 10.1175/1520-0442(2001)014 <0418:TROTAA2.0.CO;2.

    Article  Google Scholar 

  • Yu, Y. Y., R. C. Ren, J. G. Hu, and G. X. Wu, 2014: A mass budget analysis on the interannual variability of the polar surface pressure in the winter season. J. Atmos. Sci., 71, 3539–3553, doi: 10.1175/JAS-D-13-0365.1.

    Article  Google Scholar 

  • Yu, Y. Y., R. C. Ren, and M. Cai, 2015: Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 3214–3232, doi: 10.1175/JAS-D-14-0390.1.

    Article  Google Scholar 

  • Zhai, P. M., and Coauthors, 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. Journal of Meteorological Research, 30, 283–297, doi: 10.1007/s13351-016-6101-3.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2016r060), the National Key Research and Development Program (Grant No. 2016YFA0602104), the National Natural Science Foundation of China (Grant Nos. 41575041, 41430533 and 91437105), the Chinese Academy of Sciences (Grant No. XDA11010402), and the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201406001). We acknowledge the JMA, NOAA, and UK Met Office for providing the COBE, ERSST, and HadISST datasets. The NCEP–DOE is also acknowledged. GODAS data were provided by the NOAA/OAR/ESRL PSD and obtained from their website at http://www.esrl.noaa.gov/psd/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, J., Ren, R. Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Adv. Atmos. Sci. 34, 1121–1133 (2017). https://doi.org/10.1007/s00376-017-6260-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6260-x

Key words

关键词

Navigation