Skip to main content

Advertisement

Log in

Non-human primate models of PD to test novel therapies

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, l-3,4-dihydroxyphenylalanine (l-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed l-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen T, Izpisua Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5(2):371–382. doi:10.1038/nprot.2009.241

    Article  CAS  PubMed  Google Scholar 

  • Agid Y, Cervera P, Hirsch E, Javoy-Agid F, Lehericy S, Raisman R, Ruberg M (1989) Biochemistry of Parkinson’s disease 28 years later: a critical review. Mov Disord 4(Suppl 1):S126–144

    Article  PubMed  Google Scholar 

  • Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16(3):448–458

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MR, Berthet A, Bychkov E, Porras G, Li Q, Bioulac BH, Carl YT, Bloch B, Kook S, Aubert I, Dovero S, Doudnikoff E, Gurevich VV, Gurevich EV, Bezard E (2010) Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Sci Transl Med 2 (28):28ra28. doi:10.1126/scitranslmed.3000664

  • Ai Y, Markesbery W, Zhang Z, Grondin R, Elseberry D, Gerhardt GA, Gash DM (2003) Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J Comp Neurol 461(2):250–261. doi:10.1002/cne.10689

    Article  CAS  PubMed  Google Scholar 

  • Albanese A, Jenner P, Marsden CD, Stephenson JD (1988) Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 87(1–2):46–50

    Article  CAS  PubMed  Google Scholar 

  • Albanese A, Granata R, Gregori B, Piccardi MP, Colosimo C, Tonali P (1993) Chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to monkeys: behavioural, morphological and biochemical correlates. Neuroscience 55(3):823–832

    Article  CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L, Macias R, Guridi J, Lopez G, Alvarez E, Maragoto C, Teijeiro J, Torres A, Pavon N, Rodriguez-Oroz MC, Ochoa L, Hetherington H, Juncos J, DeLong MR, Obeso JA (2001) Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 16(1):72–78

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, Rodriguez R, Alvarez M, Pedroso I, Teijeiro J, Fernandez R, Casabona E, Salazar S, Maragoto C, Carballo M, Garcia I, Guridi J, Juncos JL, DeLong MR, Obeso JA (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80(9):979–985. doi:10.1136/jnnp.2008.154948

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Inoue T, Itoh T (2014) L-DOPA-induced behavioral sensitization of motor activity in the MPTP-treated common marmoset as a Parkinson’s disease model. Pharmacol Biochem Behav 127:62–69. doi:10.1016/j.pbb.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  • Annett LE, Rogers DC, Hernandez TD, Dunnett SB (1992) Behavioural analysis of unilateral monoamine depletion in the marmoset. Brain 115(Pt 3):825–856

    Article  PubMed  Google Scholar 

  • Apicella P, Trouche E, Nieoullon A, Legallet E, Dusticier N (1990) Motor impairments and neurochemical changes after unilateral 6-hydroxydopamine lesion of the nigrostriatal dopaminergic system in monkeys. Neuroscience 38(3):655–666

    Article  CAS  PubMed  Google Scholar 

  • Aron Badin R, Vadori M, Cozzi E, Hantraye P (2015) Translational research for Parkinsons disease: the value of pre-clinical primate models. Eur J Pharmacol 759:118–126. doi:10.1016/j.ejphar.2015.03.038

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. doi:10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  • Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, Bezard E (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57(1):17–26. doi:10.1002/ana.20296

    Article  CAS  PubMed  Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6(4):288–292. doi:10.1002/mds.870060404

    Article  CAS  PubMed  Google Scholar 

  • Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, Seiger A, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg 62(2):169–173. doi:10.3171/jns.1985.62.2.0169

    CAS  PubMed  Google Scholar 

  • Baker KB, Zhang J, Vitek JL (2011) Pallidal stimulation: effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson’s disease. Exp Neurol 231(2):309–313. doi:10.1016/j.expneurol.2011.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballanger B, Beaudoin-Gobert M, Neumane S, Epinat J, Metereau E, Duperrier S, Broussolle E, Thobois S, Bonnefoi F, Tourvielle C, Lavenne F, Costes N, Lebars D, Zimmer L, Sgambato-Faure V, Tremblay L (2016) Imaging Dopamine and Serotonin Systems on MPTP Monkeys: a Longitudinal PET Investigation of Compensatory Mechanisms. J Neurosci 36(5):1577–1589. doi:10.1523/JNEUROSCI.2010-15.2016

    Article  CAS  PubMed  Google Scholar 

  • Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35(7):949–956

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Oldfield EH, Chiueh CC, Doppman JL, Jacobowitz DM, Kopin IJ (1986) Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 39(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, Cunningham J, Budinger TF, Harvey-White J (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164(1):2–14. doi:10.1006/exnr.2000.7408

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14(4):564–570. doi:10.1016/j.ymthe.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  • Bara-Jimenez W, Dimitrova T, Sherzai A, Favit A, Mouradian MM, Chase TN (2004) Effect of monoamine reuptake inhibitor NS 2330 in advanced Parkinson’s disease. Mov Disord 19(10):1183–1186. doi:10.1002/mds.20124

    Article  PubMed  Google Scholar 

  • Barker RA, Drouin-Ouellet J, Parmar M (2015) Cell-based therapies for Parkinson disease-past insights and future potential. Nat Rev Neurol 11(9):492–503. doi:10.1038/nrneurol.2015.123

    Article  CAS  PubMed  Google Scholar 

  • Barraud Q, Lambrecq V, Forni C, McGuire S, Hill M, Bioulac B, Balzamo E, Bezard E, Tison F, Ghorayeb I (2009) Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol 219(2):574–582. doi:10.1016/j.expneurol.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Johnson EM Jr (2016a) Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? Neurobiol Dis. doi:10.1016/j.nbd.2016.03.027

    Google Scholar 

  • Bartus RT, Johnson EM Jr (2016b) Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? Neurobiol Dis. doi:10.1016/j.nbd.2016.03.026

    Google Scholar 

  • Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, Johnson EM Jr, Olanow CW, Mufson EJ, Kordower JH (2011) Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate brains. Mov Disord 26(1):27–36. doi:10.1002/mds.23442

    Article  PubMed  Google Scholar 

  • Bartus RT, Kordower JH, Johnson EM Jr, Brown L, Kruegel BR, Chu Y, Baumann TL, Lang AE, Olanow CW, Herzog CD (2015) Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with alpha-synucleinopathies. Neurobiol Dis 78:162–171. doi:10.1016/j.nbd.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  • Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdere P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bezard E (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168. doi:10.1016/j.pneurobio.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  • Bedard PJ, Di Paolo T, Falardeau P, Boucher R (1986) Chronic treatment with L-DOPA, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H]spiperone binding. Brain Res 379(2):294–299

    Article  CAS  PubMed  Google Scholar 

  • Bedard PJ, Mancilla BG, Blanchette P, Gagnon C, Di Paolo T (1992) Levodopa-induced dyskinesia: facts and fancy. What does the MPTP monkey model tell us? Can J Neurol Sci 19(1 Suppl):134–137

    CAS  PubMed  Google Scholar 

  • Bédard PJ, Boucher R, Gomez-Mancilla B, Blanchette P (1992) Primate models of Parkinson’s disease. In: Boulton AA, Baker GB, Butterworth RF (eds) Animal Models of Neurological Disease, I. vol 21. Humana Press, pp 159-173

  • Belaid H, Adrien J, Laffrat E, Tande D, Karachi C, Grabli D, Arnulf I, Clark SD, Drouot X, Hirsch EC, Francois C (2014) Sleep disorders in Parkinsonian macaques: effects of L-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 34(27):9124–9133. doi:10.1523/JNEUROSCI.0181-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346

    CAS  PubMed  Google Scholar 

  • Benabid AL, Chabardes S, Torres N, Piallat B, Krack P, Fraix V, Pollak P (2009) Functional neurosurgery for movement disorders: a historical perspective. Prog Brain Res 175:379–391. doi:10.1016/S0079-6123(09)17525-8

    Article  PubMed  Google Scholar 

  • Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5(4):382–389

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Boraud T, Dubedat P, Boireau A, Stutzmann JM, Gross C (1995) Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur J Pharmacol 284(3):299–307

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J (2014) Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease. Front Aging Neurosci 6:87. doi:10.3389/fnagi.2014.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensaid M, Michel PP, Clark SD, Hirsch EC, Francois C (2016) Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson’s disease. Exp Neurol 275(Pt 1):209–219. doi:10.1016/j.expneurol.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  • Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN, Group NS (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1):156–171. doi:10.1093/brain/awn291

    Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schneider C, Di Paolo T, Gasparini F, Hariry S, Vandemeulebroecke M, Abi-Saab W, Cooke K, Johns D, Gomez-Mancilla B (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26(7):1243–1250. doi:10.1002/mds.23616

    Article  PubMed  Google Scholar 

  • Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, Goetz CG, Halliday GM, Hardy J, Lang AE, Litvan I, Marek K, Obeso J, Oertel W, Olanow CW, Poewe W, Stern M, Deuschl G (2014) Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord 29(4):454–462. doi:10.1002/mds.25844

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975):1436–1438

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72(2):507–520

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455

    Article  CAS  PubMed  Google Scholar 

  • Berretta S, Parthasarathy HB, Graybiel AM (1997) Local release of GABAergic inhibition in the motor cortex induces immediate-early gene expression in indirect pathway neurons of the striatum. J Neurosci 17(12):4752–4763

    CAS  PubMed  Google Scholar 

  • Bezard E, Brotchie JM, Gross CE (2001a) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2(8):577–588. doi:10.1038/35086062

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Dovero S, Prunier C, Ravenscroft P, Chalon S, Guilloteau D, Crossman AR, Bioulac B, Brotchie JM, Gross CE (2001b) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21(17):6853–6861

    CAS  PubMed  Google Scholar 

  • Bezard E, Ravenscroft P, Gross CE, Crossman AR, Brotchie JM (2001c) Upregulation of striatal preproenkephalin gene expression occurs before the appearance of parkinsonian signs in 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine monkeys. Neurobiol Dis 8(2):343–350. doi:10.1006/nbdi.2000.0375

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, Sokoloff P (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9(6):762–767. doi:10.1038/nm875

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Hill MP, Crossman AR, Brotchie JM, Michel A, Grimee R, Klitgaard H (2004) Levetiracetam improves choreic levodopa-induced dyskinesia in the MPTP-treated macaque. Eur J Pharmacol 485(1–3):159–164

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Gerlach I, Moratalla R, Gross CE, Jork R (2006) 5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson’s disease. Neurobiol Dis 23(1):77–86. doi:10.1016/j.nbd.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  • Bibbiani F, Costantini LC, Patel R, Chase TN (2005) Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 192(1):73–78. doi:10.1016/j.expneurol.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  • Blanchet PJ, Calon F, Martel JC, Bedard PJ, Di Paolo T, Walters RR, Piercey MF (1995) Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther 272(2):854–859

    CAS  PubMed  Google Scholar 

  • Blanchet PJ, Grondin R, Bedard PJ (1996) Dyskinesia and wearing-off following dopamine D1 agonist treatment in drug-naive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. Mov Disord 11(1):91–94. doi:10.1002/mds.870110117

    Article  CAS  PubMed  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Chase TN (1998) Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord 13(5):798–802. doi:10.1002/mds.870130507

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–129. doi:10.1016/j.parkreldis.2008.04.015

    Article  PubMed  Google Scholar 

  • Blesa J, Juri C, Garcia-Cabezas MA, Adanez R, Sanchez-Gonzalez MA, Cavada C, Obeso JA (2011) Inter-hemispheric asymmetry of nigrostriatal dopaminergic lesion: a possible compensatory mechanism in Parkinson’s disease. Front Syst Neurosci 5:92. doi:10.3389/fnsys.2011.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573. doi:10.1016/j.bbr.2009.12.048

    Article  CAS  PubMed  Google Scholar 

  • Boix J, Padel T, Paul G (2015) A partial lesion model of Parkinson’s disease in mice–characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 284:196–206. doi:10.1016/j.bbr.2015.01.053

    Article  CAS  PubMed  Google Scholar 

  • Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y (1984) [3H]spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Eur J Pharmacol 99(2–3):167–175

    Article  CAS  PubMed  Google Scholar 

  • Borgonovo J, Allende-Castro C, Laliena A, Guerrero N, Silva H, Concha ML (2017) Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson’s disease. Parkinsonism Relat Disord 35:17–24. doi:10.1016/j.parkreldis.2016.11.009

    Article  PubMed  Google Scholar 

  • Bourque M, Dluzen DE, Di Paolo T (2009) Neuroprotective actions of sex steroids in Parkinson’s disease. Front Neuroendocrinol 30(2):142–157. doi:10.1016/j.yfrne.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 22(4):1213–1225. doi:10.1096/fj.07-9677com

    Article  CAS  PubMed  Google Scholar 

  • Boyce S, Clarke CE, Luquin R, Peggs D, Robertson RG, Mitchell IJ, Sambrook MA, Crossman AR (1990a) Induction of chorea and dystonia in parkinsonian primates. Mov Disord 5(1):3–7. doi:10.1002/mds.870050103

    Article  CAS  PubMed  Google Scholar 

  • Boyce S, Rupniak NM, Steventon MJ, Iversen SD (1990b) Characterisation of dyskinesias induced by L-dopa in MPTP-treated squirrel monkeys. Psychopharmacology 102(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2008) Invited Article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925. doi:10.1212/01.wnl.0000312279.49272.9f

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134. doi:10.1007/s00441-004-0956-9

    Article  PubMed  Google Scholar 

  • Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20(8):919–931. doi:10.1002/mds.20612

    Article  PubMed  Google Scholar 

  • Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64(5):485–491. doi:10.1002/ana.21541

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80(14):4546–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calon F, Di Paolo T (2002) Levodopa response motor complications–GABA receptors and preproenkephalin expression in human brain. Parkinsonism Relat Disord 8(6):449–454

    Article  PubMed  Google Scholar 

  • Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2002a) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61(2):186–196

    Article  CAS  PubMed  Google Scholar 

  • Calon F, Morissette M, Ghribi O, Goulet M, Grondin R, Blanchet PJ, Bedard PJ, Di Paolo T (2002b) Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 26(1):127–138

    Article  CAS  PubMed  Google Scholar 

  • Calon F, Morissette M, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2003a) Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Mov Disord 18(3):241–253. doi:10.1002/mds.10343

    Article  PubMed  Google Scholar 

  • Calon F, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2003b) Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14(3):404–416

    Article  CAS  PubMed  Google Scholar 

  • Calon F, Dridi M, Hornykiewicz O, Bedard PJ, Rajput AH, Di Paolo T (2004) Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 127(Pt 5):1075–1084. doi:10.1093/brain/awh128

    Article  PubMed  Google Scholar 

  • Campos-Romo A, Ojeda-Flores R, Moreno-Briseno P, Fernandez-Ruiz J (2009) Quantitative evaluation of MPTP-treated nonhuman parkinsonian primates in the HALLWAY task. J Neurosci Methods 177(2):361–368. doi:10.1016/j.jneumeth.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  • Carlsson ML (1993) Are the disparate pharmacological profiles of competitive and un-competitive NMDA antagonists due to different baseline activities of distinct glutamatergic pathways? (Hypothesis). J Neural Transm Gen Sect 94(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Cenci MA, Lundblad M (2006) Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 99(2):381–392. doi:10.1111/j.1471-4159.2006.04124.x

    Article  CAS  PubMed  Google Scholar 

  • Cerasa A, Novellino F, Quattrone A (2016) Connectivity Changes in Parkinson’s Disease. Curr Neurol Neurosci Rep 16(10):91. doi:10.1007/s11910-016-0687-9

    Article  PubMed  Google Scholar 

  • Chan AW, Chong KY, Martinovich C, Simerly C, Schatten G (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291(5502):309–312. doi:10.1126/science.291.5502.309

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay V (1991) Alterations in the locus coeruleus in dementias of Alzheimer’s and Parkinson’s disease. Prog Brain Res 88:625–630

    Article  CAS  PubMed  Google Scholar 

  • Chase TN, Oh JD (2000) Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications. Ann Neurol 47 (4 Suppl 1):S122-129; discussion S129-130

  • Chaumette T, Lebouvier T, Aubert P, Lardeux B, Qin C, Li Q, Accary D, Bezard E, des Bruley Varannes S, Derkinderen P, Neunlist M (2009) Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. Neurogastroenterol Motil 21(2):215–222. doi:10.1111/j.1365-2982.2008.01226.x

    Article  CAS  PubMed  Google Scholar 

  • Chen CP, Alder JT, Bray L, Kingsbury AE, Francis PT, Foster OJ (1998) Post-synaptic 5-HT1A and 5-HT2A receptors are increased in Parkinson’s disease neocortex. Ann N Y Acad Sci 861:288–289

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang H, Wei H, Gu S, Wei H (2013) Istradefylline, an adenosine A(2)A receptor antagonist, for patients with Parkinson’s Disease: a meta-analysis. J Neurol Sci 324(1–2):21–28. doi:10.1016/j.jns.2012.08.030

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zheng Y, Kang Y, Yang W, Niu Y, Guo X, Tu Z, Si C, Wang H, Xing R, Pu X, Yang SH, Li S, Ji W, Li XJ (2015) Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 24(13):3764–3774. doi:10.1093/hmg/ddv120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67(6):715–725. doi:10.1002/ana.21995

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi P, Golts N, Snyder H, Chong M, Petrucelli L, Hardy J, Sparkman D, Cochran E, Lee JM, Wolozin B (2001) Co-association of parkin and alpha-synuclein. NeuroReport 12(13):2839–2843

    Article  CAS  PubMed  Google Scholar 

  • Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669. doi:10.1212/WNL.0b013e3181c29356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25(1):134–149. doi:10.1016/j.nbd.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  • Clarke CE, Sambrook MA, Mitchell IJ, Crossman AR (1987) Levodopa-induced dyskinesia and response fluctuations in primates rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J Neurol Sci 78(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Close SP, Elliott PJ, Hayes AG, Marriott AS (1990) Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology 102(3):295–300

    Article  CAS  PubMed  Google Scholar 

  • Collier TJ, Redmond DE Jr, Steece-Collier K, Lipton JW, Manfredsson FP (2016) Is Alpha-Synuclein Loss-of-Function a Contributor to Parkinsonian Pathology? Evidence from Non-human Primates. Front Neurosci 10:12. doi:10.3389/fnins.2016.00012

    PubMed  Google Scholar 

  • Cooper DR, Marrel C, Testa B, van de Waterbeemd H, Quinn N, Jenner P, Marsden CD (1984) L-Dopa methyl ester–a candidate for chronic systemic delivery of L-Dopa in Parkinson’s disease. Clin Neuropharmacol 7(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Costa S, Iravani MM, Pearce RK, Jenner P (2001) Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur J Pharmacol 412(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Crossman AR, Clarke CE, Boyce S, Robertson RG, Sambrook MA (1987) MPTP-induced parkinsonism in the monkey: neurochemical pathology, complications of treatment and pathophysiological mechanisms. Can J Neurol Sci 14(3 Suppl):428–435

    Article  CAS  PubMed  Google Scholar 

  • Daadi MM, Pivirotto P, Bringas J, Cunningham J, Forsayeth J, Eberling J, Bankiewicz KS (2006) Distribution of AAV2-hAADC-transduced cells after 3 years in Parkinsonian monkeys. NeuroReport 17(2):201–204

    Article  CAS  PubMed  Google Scholar 

  • Darlot F, Moro C, El Massri N, Chabrol C, Johnstone DM, Reinhart F, Agay D, Torres N, Bekha D, Auboiroux V, Costecalde T, Peoples CL, Anastascio HD, Shaw VE, Stone J, Mitrofanis J, Benabid AL (2016) Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann Neurol 79(1):59–75. doi:10.1002/ana.24542

    Article  PubMed  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12. doi:10.1016/j.abb.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2004) Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur J Neurosci 20(5):1371–1378. doi:10.1111/j.1460-9568.2004.03586.x

    Article  CAS  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2009) Interaction between nicotinic and dopaminergic therapies on cognition in a chronic Parkinson model. Brain Res 1262:109–114. doi:10.1016/j.brainres.2009.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean C, Gross CE, Bioulac B, Boraud T (2008) Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J Neurophysiol 100(1):385–396. doi:10.1152/jn.90466.2008

    Article  PubMed  Google Scholar 

  • Del Tredici K, Braak H (2016) Review: sporadic Parkinson’s disease: development and distribution of alpha-synuclein pathology. Neuropathol Appl Neurobiol 42(1):33–50. doi:10.1111/nan.12298

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  CAS  PubMed  Google Scholar 

  • Di Monte DA, McCormack A, Petzinger G, Janson AM, Quik M, Langston WJ (2000) Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord 15(3):459–466

    Article  PubMed  Google Scholar 

  • Di Paolo T, Gregoire L, Feuerbach D, Elbast W, Weiss M, Gomez-Mancilla B (2014) AQW051, a novel and selective nicotinic acetylcholine receptor alpha7 partial agonist, reduces L-Dopa-induced dyskinesias and extends the duration of L-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord 20(11):1119–1123. doi:10.1016/j.parkreldis.2014.05.007

    Article  PubMed  Google Scholar 

  • Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, Hardy J, Leverenz JB, Del Tredici K, Wszolek ZK, Litvan I (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8(12):1150–1157. doi:10.1016/S1474-4422(09)70238-8

    Article  CAS  PubMed  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386. doi:10.1212/01.wnl.0000247740.47667.03

    Article  CAS  PubMed  Google Scholar 

  • Dugan LL, Tian L, Quick KL, Hardt JI, Karimi M, Brown C, Loftin S, Flores H, Moerlein SM, Polich J, Tabbal SD, Mink JW, Perlmutter JS (2014) Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates. Ann Neurol 76(3):393–402. doi:10.1002/ana.24220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dungo R, Deeks ED (2013) Istradefylline: first global approval. Drugs 73(8):875–882. doi:10.1007/s40265-013-0066-7

    Article  CAS  PubMed  Google Scholar 

  • Duong TQ (2010) Diffusion tensor and perfusion MRI of non-human primates. Methods 50(3):125–135. doi:10.1016/j.ymeth.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391. doi:10.1111/j.1476-5381.2011.01426.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983. doi:10.1212/01.wnl.0000312381.29287.ff

    Article  CAS  PubMed  Google Scholar 

  • Eberling JL, Kells AP, Pivirotto P, Beyer J, Bringas J, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Functional effects of AAV2-GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum Gene Ther 20(5):511–518. doi:10.1089/hum.2008.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Massri N, Moro C, Torres N, Darlot F, Agay D, Chabrol C, Johnstone DM, Stone J, Benabid AL, Mitrofanis J (2016) Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys. Exp Brain Res 234(11):3225–3232. doi:10.1007/s00221-016-4720-7

    Article  PubMed  Google Scholar 

  • Elsworth JD, Taylor JR, Sladek JR Jr, Collier TJ, Redmond DE Jr, Roth RH (2000) Striatal dopaminergic correlates of stable parkinsonism and degree of recovery in old-world primates one year after MPTP treatment. Neuroscience 95(2):399–408

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401(2):253–265

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Moirano J, Schafernak KT, Moirano M, Evans M, Konecny T, Roitberg B, Ambarish P, Mangubat E, Ma Y, Eidelberg D, Holden J, Kordower JH, Leestma JE (2006) Basal ganglia lesions after MPTP administration in rhesus monkeys. Neurobiol Dis 23(2):281–289. doi:10.1016/j.nbd.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons H, Roitberg BZ, Tuccar E, Roberts A, Kaplitt MG, Eidelberg D (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27(3):501–509. doi:10.1038/sj.jcbfm.9600364

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, Joers V, Swanson C, Holden JE, Zhang SC (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3(3):646–650. doi:10.1016/j.celrep.2013.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engeln M, De Deurwaerdere P, Li Q, Bezard E, Fernagut PO (2015) Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia. Cereb Cortex 25(9):2783–2792. doi:10.1093/cercor/bhu076

    Article  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Erro R, Vitale C, Amboni M, Picillo M, Moccia M, Longo K, Santangelo G, De Rosa A, Allocca R, Giordano F, Orefice G, De Michele G, Santoro L, Pellecchia MT, Barone P (2013) The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients. PLoS ONE 8(8):e70244. doi:10.1371/journal.pone.0070244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslamboli A (2005) Marmoset monkey models of Parkinson’s disease: which model, when and why? Brain Res Bull 68(3):140–149. doi:10.1016/j.brainresbull.2005.08.005

    Article  PubMed  Google Scholar 

  • Eslamboli A, Baker HF, Ridley RM, Annett LE (2003a) Sensorimotor deficits in a unilateral intrastriatal 6-OHDA partial lesion model of Parkinson’s disease in marmoset monkeys. Exp Neurol 183(2):418–429

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli A, Cummings RM, Ridley RM, Baker HF, Muzyczka N, Burger C, Mandel RJ, Kirik D, Annett LE (2003b) Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol 184(1):536–548

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, Mandel RJ, Annett L, Kirik D (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25(4):769–777. doi:10.1523/JNEUROSCI.4421-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130(Pt 3):799–815. doi:10.1093/brain/awl382

    Article  PubMed  Google Scholar 

  • Evans AH, Farrell MJ, Gibson SJ, Helme RD, Lim SY (2012) Dyskinetic patients show rebound worsening of affect after an acute L-dopa challenge. Parkinsonism Relat Disord 18(5):514–519. doi:10.1016/j.parkreldis.2012.01.020

    Article  PubMed  Google Scholar 

  • Fabbri M, Coelho M, Abreu D, Guedes LC, Rosa MM, Costa N, Antonini A, Ferreira JJ (2016) Do patients with late-stage Parkinson’s disease still respond to levodopa? Parkinsonism Relat Disord 26:10–16. doi:10.1016/j.parkreldis.2016.02.021

    Article  PubMed  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22 (10):1379-1389; quiz 1523. doi:10.1002/mds.21475

  • Falardeau P, Bouchard S, Bedard PJ, Boucher R, Di Paolo T (1988) Behavioral and biochemical effect of chronic treatment with D-1 and/or D-2 dopamine agonists in MPTP monkeys. Eur J Pharmacol 150(1–2):59–66

    Article  CAS  PubMed  Google Scholar 

  • Fernandez HH, Friedman JH (1999) Punding on L-dopa. Mov Disord 14(5):836–838

    Article  CAS  PubMed  Google Scholar 

  • Fiandaca MS, Federoff HJ (2014) Using viral-mediated gene delivery to model Parkinson’s disease: do nonhuman primate investigations expand our understanding? Exp Neurol 256:117–125. doi:10.1016/j.expneurol.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  • Fifel K, Vezoli J, Dzahini K, Claustrat B, Leviel V, Kennedy H, Procyk E, Dkhissi-Benyahya O, Gronfier C, Cooper HM (2014) Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PLoS ONE 9(1):e86240. doi:10.1371/journal.pone.0086240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):142–151

    CAS  PubMed  Google Scholar 

  • Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ, Jr., Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ, Group CSPS (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362(22):2077–2091. doi:10.1056/NEJMoa0907083

    Article  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20(4):449–455. doi:10.1002/ana.410200403

    Article  CAS  PubMed  Google Scholar 

  • Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, Cunningham J, Bankiewicz KS (2006) A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 14(4):571–577. doi:10.1016/j.ymthe.2006.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox SH (2013) Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs 73(13):1405–1415. doi:10.1007/s40265-013-0105-4

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157. doi:10.1016/S0079-6123(10)84007-5

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Lang AE, Brotchie JM (2006) Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 21(10):1578–1594. doi:10.1002/mds.20936

    Article  PubMed  Google Scholar 

  • Fox SH, Brotchie JM, Lang AE (2008) Non-dopaminergic treatments in development for Parkinson’s disease. Lancet Neurol 7(10):927–938. doi:10.1016/S1474-4422(08)70214-X

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Visanji N, Reyes G, Huot P, Gomez-Ramirez J, Johnston T, Brotchie JM (2010) Neuropsychiatric behaviors in the MPTP marmoset model of Parkinson’s disease. Can J Neurol Sci 37(1):86–95

    Article  PubMed  Google Scholar 

  • Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, Poewe W, Rascol O, Goetz CG, Sampaio C (2011) The Movement Disorder Society Evidence-Based Medicine Review Update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 26(Suppl 3):S2–41. doi:10.1002/mds.23829

    Article  PubMed  Google Scholar 

  • Fox SH, Johnston TH, Li Q, Brotchie J, Bezard E (2012) A critique of available scales and presentation of the Non-Human Primate Dyskinesia Rating Scale. Mov Disord 27(11):1373–1378. doi:10.1002/mds.25133

    Article  PubMed  Google Scholar 

  • Fronczek R, Overeem S, Lee SY, Hegeman IM, van Pelt J, van Duinen SG, Lammers GJ, Swaab DF (2007) Hypocretin (orexin) loss in Parkinson’s disease. Brain 130(Pt 6):1577–1585. doi:10.1093/brain/awm090

    Article  PubMed  Google Scholar 

  • Fukuzaki K, Kamenosono T, Kitazumi K, Nagata R (2000) Effects of ropinirole on motor behavior in MPTP-treated common marmosets. Pharmacol Biochem Behav 67(1):121–129

    Article  CAS  PubMed  Google Scholar 

  • Gaenslen A, Swid I, Liepelt-Scarfone I, Godau J, Berg D (2011) The patients’ perception of prodromal symptoms before the initial diagnosis of Parkinson’s disease. Mov Disord 26(4):653–658. doi:10.1002/mds.23499

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagnon C, Bedard PJ, Di Paolo T (1990) Effect of chronic treatment of MPTP monkeys with dopamine D-1 and/or D-2 receptor agonists. Eur J Pharmacol 178(1):115–120

    Article  CAS  PubMed  Google Scholar 

  • Garbayo E, Ansorena E, Lana H, Carmona-Abellan MD, Marcilla I, Lanciego JL, Luquin MR, Blanco-Prieto MJ (2016) Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys. Biomaterials 110:11–23. doi:10.1016/j.biomaterials.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  • Garcia BG, Neely MD, Deutch AY (2010) Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: modulation of Glutamate Release Reverses Dopamine Depletion-Induced Dendritic Spine Loss. Cereb Cortex 20(10):2423–2432

    Article  PubMed  PubMed Central  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252–255. doi:10.1038/380252a0

    Article  CAS  PubMed  Google Scholar 

  • Gash DM, Zhang Z, Ai Y, Grondin R, Coffey R, Gerhardt GA (2005) Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol 58(2):224–233. doi:10.1002/ana.20549

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt GA, Cass WA, Huettl P, Brock S, Zhang Z, Gash DM (1999) GDNF improves dopamine function in the substantia nigra but not the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res 817(1–2):163–171

    Article  CAS  PubMed  Google Scholar 

  • Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F (2000) The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 24(6):655–668

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9(5):589–595. doi:10.1038/nm850

    Article  CAS  PubMed  Google Scholar 

  • Gnanalingham KK, Erol DD, Hunter AJ, Smith LA, Jenner P, Marsden CD (1995a) Differential anti-parkinsonian effects of benzazepine D1 dopamine agonists with varying efficacies in the MPTP-treated common marmoset. Psychopharmacology 117(3):275–286

    Article  CAS  PubMed  Google Scholar 

  • Gnanalingham KK, Hunter AJ, Jenner P, Marsden CD (1995b) The differential behavioural effects of benzazepine D1 dopamine agonists with varying efficacies, co-administered with quinpirole in primate and rodent models of Parkinson’s disease. Psychopharmacology 117(3):287–297

    Article  CAS  PubMed  Google Scholar 

  • Goetz CG, Tanner CM, Klawans HL (1982) Drug holiday in the management of Parkinson disease. Clin Neuropharmacol 5(4):351–364

    Article  CAS  PubMed  Google Scholar 

  • Goetz CG, Laska E, Hicking C, Damier P, Muller T, Nutt J, Warren Olanow C, Rascol O, Russ H (2008) Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord 23(5):700–707. doi:10.1002/mds.21897

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS, Li ST, Holmes C, Bankiewicz K (2003) Sympathetic innervation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. J Pharmacol Exp Ther 306(3):855–860. doi:10.1124/jpet.103.051714

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mancilla B, Bedard PJ (1992) Effect of chronic treatment with (+)-PHNO, a D2 agonist in MPTP-treated monkeys. Exp Neurol 117(2):185–188

    Article  CAS  PubMed  Google Scholar 

  • Graham WC, Sambrook MA, Crossman AR (1993) Differential effect of chronic dopaminergic treatment on dopamine D1 and D2 receptors in the monkey brain in MPTP-induced parkinsonism. Brain Res 602(2):290–303

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Canales JJ, Capper-Loup C (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci 23(10 Suppl):S71–77

    Article  CAS  PubMed  Google Scholar 

  • Gregoire L, Rassoulpour A, Guidetti P, Samadi P, Bedard PJ, Izzo E, Schwarcz R, Di Paolo T (2008) Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res 186(2):161–167. doi:10.1016/j.bbr.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  • Gregoire L, Samadi P, Graham J, Bedard PJ, Bartoszyk GD, Di Paolo T (2009) Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of L-Dopa in parkinsonian monkeys. Parkinsonism Relat Disord 15(6):445–452. doi:10.1016/j.parkreldis.2008.11.001

    Article  PubMed  Google Scholar 

  • Gregoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, Di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, L-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 17(4):270–276. doi:10.1016/j.parkreldis.2011.01.008

    Article  PubMed  Google Scholar 

  • Gregoire L, Jourdain VA, Townsend M, Roach A, Di Paolo T (2013) Safinamide reduces dyskinesias and prolongs L-DOPA antiparkinsonian effect in parkinsonian monkeys. Parkinsonism Relat Disord 19(5):508–514. doi:10.1016/j.parkreldis.2013.01.009

    Article  PubMed  Google Scholar 

  • Grondin R, Goulet M, Di Paolo T, Bedard PJ (1996) Cabergoline, a long-acting dopamine D2-like receptor agonist, produces a sustained antiparkinsonian effect with transient dyskinesias in parkinsonian drug-naive primates. Brain Res 735(2):298–306

    Article  CAS  PubMed  Google Scholar 

  • Grondin R, Zhang Z, Yi A, Cass WA, Maswood N, Andersen AH, Elsberry DD, Klein MC, Gerhardt GA, Gash DM (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125(Pt 10):2191–2201

    Article  PubMed  Google Scholar 

  • Grondin R, Cass WA, Zhang Z, Stanford JA, Gash DM, Gerhardt GA (2003) Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23(5):1974–1980

    CAS  PubMed  Google Scholar 

  • Grondin R, Zhang Z, Ai Y, Ding F, Walton AA, Surgener SP, Gerhardt GA, Gash DM (2008) Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant 17(4):373–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grosch J, Winkler J, Kohl Z (2016) Early Degeneration of Both Dopaminergic and Serotonergic Axons - A Common Mechanism in Parkinson’s Disease. Front Cell Neurosci 10:293. doi:10.3389/fncel.2016.00293

    Article  PubMed  PubMed Central  Google Scholar 

  • Grow DA, McCarrey JR, Navara CS (2016) Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res 17(2):352–366. doi:10.1016/j.scr.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  • Guigoni C, Dovero S, Aubert I, Li Q, Bioulac BH, Bloch B, Gurevich EV, Gross CE, Bezard E (2005) Levodopa-induced dyskinesia in MPTP-treated macaques is not dependent on the extent and pattern of nigrostrial lesioning. Eur J Neurosci 22(1):283–287. doi:10.1111/j.1460-9568.2005.04196.x

    Article  PubMed  Google Scholar 

  • Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1986) Dopamine D2 receptor density remains constant in treated Parkinson’s disease. Ann Neurol 19(5):487–492. doi:10.1002/ana.410190510

    Article  CAS  PubMed  Google Scholar 

  • Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier LS, Han DW, Glage S, Miller K, Fischer P, Scholer HR, Martin U (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5(4):434–441. doi:10.1016/j.stem.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  • Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18(8):1458–1461. doi:10.1038/mt.2010.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadj Tahar A, Gregoire L, Bangassoro E, Bedard PJ (2000) Sustained cabergoline treatment reverses levodopa-induced dyskinesias in parkinsonian monkeys. Clin Neuropharmacol 23(4):195–202

    Article  CAS  PubMed  Google Scholar 

  • Hadj Tahar A, Gregoire L, Darre A, Belanger N, Meltzer L, Bedard PJ (2004) Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol Dis 15(2):171–176. doi:10.1016/j.nbd.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  • Hadjiconstantinou M, Neff NH (2008) Enhancing aromatic L-amino acid decarboxylase activity: implications for L-DOPA treatment in Parkinson’s disease. CNS Neurosci Ther 14(4):340–351. doi:10.1111/j.1755-5949.2008.00058.x

    Article  CAS  PubMed  Google Scholar 

  • Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Sundberg M, Moore MA, Perez-Torres E, Brownell AL, Schumacher JM, Spealman RD, Isacson O (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274. doi:10.1016/j.stem.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday GM (2009) Thalamic changes in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S152–155. doi:10.1016/S1353-8020(09)70804-1

    Article  PubMed  Google Scholar 

  • Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510(1):104–107

    Article  CAS  PubMed  Google Scholar 

  • Halliday G, Herrero MT, Murphy K, McCann H, Ros-Bernal F, Barcia C, Mori H, Blesa FJ, Obeso JA (2009) No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Mov Disord 24(10):1519–1523. doi:10.1002/mds.22481

    Article  PubMed  Google Scholar 

  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(Pt 1):4–20. doi:10.1093/brain/awh029

    Article  PubMed  Google Scholar 

  • Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124. doi:10.1016/j.bbacli.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2002a) Dopamine reuptake inhibition and failure to evoke dyskinesia in MPTP-treated primates. Eur J Pharmacol 451(2):157–160

    Article  CAS  PubMed  Google Scholar 

  • Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2002b) Dopamine, but not norepinephrine or serotonin, reuptake inhibition reverses motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Pharmacol Exp Ther 303(3):952–958. doi:10.1124/jpet.102.039743

    Article  CAS  PubMed  Google Scholar 

  • Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2004) The monoamine reuptake inhibitor BTS 74 398 fails to evoke established dyskinesia but does not synergise with levodopa in MPTP-treated primates. Mov Disord 19(1):15–21. doi:10.1002/mds.10596

    Article  PubMed  Google Scholar 

  • Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, Willer JC, Maziere M (1993) Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience 53(1):169–178

    Article  CAS  PubMed  Google Scholar 

  • Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14(3):177–187. doi:10.1038/nrn3253

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem 277(50):49071–49076. doi:10.1074/jbc.M208046200

    Article  CAS  PubMed  Google Scholar 

  • Hauser RA, Salin L, Juhel N, Konyago VL (2007) Randomized trial of the triple monoamine reuptake inhibitor NS 2330 (tesofensine) in early Parkinson’s disease. Mov Disord 22(3):359–365. doi:10.1002/mds.21258

    Article  PubMed  Google Scholar 

  • Heimer G, Rivlin M, Israel Z, Bergman H (2006) Synchronizing activity of basal ganglia and pathophysiology of Parkinson’s disease. J Neural Transm Suppl 70:17–20

    Article  CAS  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000) Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol 47(3):345–352

    Article  CAS  PubMed  Google Scholar 

  • Herzog CD, Dass B, Holden JE, Stansell J 3rd, Gasmi M, Tuszynski MH, Bartus RT, Kordower JH (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22(8):1124–1132. doi:10.1002/mds.21503

    Article  PubMed  Google Scholar 

  • Herzog CD, Dass B, Gasmi M, Bakay R, Stansell JE, Tuszynski M, Bankiewicz K, Chen EY, Chu Y, Bishop K, Kordower JH, Bartus RT (2008) Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol Ther 16(10):1737–1744. doi:10.1038/mt.2008.170

    Article  CAS  PubMed  Google Scholar 

  • Herzog CD, Brown L, Gammon D, Kruegel B, Lin R, Wilson A, Bolton A, Printz M, Gasmi M, Bishop KM, Kordower JH, Bartus RT (2009) Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson’s disease. Neurosurgery 64 (4):602-612; discussion 612-603. doi:10.1227/01.NEU.0000340682.06068.01

  • Hickey P, Stacy M (2013) AAV2-neurturin (CERE-120) for Parkinson’s disease. Expert Opin Biol Ther 13(1):137–145. doi:10.1517/14712598.2013.754420

    Article  CAS  PubMed  Google Scholar 

  • Hickey P, Stacy M (2016) Deep Brain Stimulation: a Paradigm Shifting Approach to Treat Parkinson’s Disease. Front Neurosci 10:173. doi:10.3389/fnins.2016.00173

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 84(16):5976–5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornykiewicz O (1975) Brain monoamines and parkinsonism. Natl Inst Drug Abuse Res Monogr Ser 3:13–21

    CAS  Google Scholar 

  • Huot P, Fox SH, Brotchie JM (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95(2):163–212. doi:10.1016/j.pneurobio.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2012a) L-DOPA pharmacokinetics in the MPTP-lesioned macaque model of Parkinson’s disease. Neuropharmacology 63(5):829–836. doi:10.1016/j.neuropharm.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012b) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiol Aging 33 (1):194 e195-115. doi:10.1016/j.neurobiolaging.2010.04.035

  • Huot P, Johnston TH, Fox SH, Newman-Tancredi A, Brotchie JM (2015) The highly-selective 5-HT(1A) agonist F15599 reduces L-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology 97:306–311. doi:10.1016/j.neuropharm.2015.05.033

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Stubbs CM, Jenner P, Marsden CD (1996) D3 receptor expression within the basal ganglia is not affected by Parkinson’s disease. Neurosci Lett 214(2–3):75–78

    Article  CAS  PubMed  Google Scholar 

  • Iderberg H, Francardo V, Pioli EY (2012) Animal models of L-DOPA-induced dyskinesia: an update on the current options. Neuroscience 211:13–27. doi:10.1016/j.neuroscience.2012.03.023

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H (2012) Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 5:35. doi:10.1186/1756-6606-5-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbert C, Bezard E, Guitraud S, Boraud T, Gross CE (2000) Comparison of eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the Macaque monkey. J Neurosci Methods 96(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Iravani MM, Costa S, Al-Bargouthy G, Jackson MJ, Zeng BY, Kuoppamaki M, Obeso JA, Jenner P (2005) Unilateral pallidotomy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets exhibiting levodopa-induced dyskinesia. Eur J Neurosci 22(6):1305–1318. doi:10.1111/j.1460-9568.2005.04308.x

    Article  PubMed  Google Scholar 

  • Ito K, Enomoto H (2016) Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis. J Biochem 160(2):77–85. doi:10.1093/jb/mvw037

    Article  CAS  PubMed  Google Scholar 

  • Izpisua Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE, Lee KF, Leopold DA, Miller CT, Mitchell JF, Mitalipov S, Moutri AR, Movshon JA, Okano H, Reynolds JH, Ringach D, Sejnowski TJ, Silva AC, Strick PL, Wu J, Zhang F (2015) Brains, genes, and primates. Neuron 86(3):617–631. doi:10.1016/j.neuron.2015.03.021

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ, Smith LA, Al-Barghouthy G, Rose S, Jenner P (2007) Decreased expression of l-dopa-induced dyskinesia by switching to ropinirole in MPTP-treated common marmosets. Exp Neurol 204(1):162–170. doi:10.1016/j.expneurol.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  • Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S (2016) Evaluation of Models of Parkinson’s Disease. Front Neurosci 9:503. doi:10.3389/fnins.2015.00503

    Article  PubMed  PubMed Central  Google Scholar 

  • Jankovic J, Hunter C (2002) A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord 8(4):271–276

    Article  CAS  PubMed  Google Scholar 

  • Jarraya B, Boulet S, Ralph GS, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M, Delzescaux T, Drouot X, Herard AS, Day DM, Brouillet E, Kingsman SM, Hantraye P, Mitrophanous KA, Mazarakis ND, Palfi S (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1 (2):2ra4. doi:10.1126/scitranslmed.3000130

  • Jellinger K (1987) Overview of morphological changes in Parkinson’s disease. Adv Neurol 45:1–18

    CAS  PubMed  Google Scholar 

  • Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51(4):540–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27(1):8–30. doi:10.1002/mds.23795

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2015) Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm (Vienna) 122(10):1429–1440. doi:10.1007/s00702-015-1405-5

    Article  CAS  Google Scholar 

  • Jenner P (2002) Experimental models of Parkinson’s disease. In: Ronken E, Scharrenburg v (eds) Parkinson’s disease. IOS Press, London, pp 39-50

  • Jenner P (2003a) The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism Relat Disord 9(3):131–137

    Article  PubMed  Google Scholar 

  • Jenner P (2003b) Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr Opin Neurol 16(Suppl 1):S3–7

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2008a) Dopamine agonists in Parkinson’s disease–focus on non-motor symptoms. Eur J Neurol 15(Suppl 2):1. doi:10.1111/j.1468-1331.2008.02211.x

    Article  PubMed  Google Scholar 

  • Jenner P (2008b) Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 64(Suppl 2):S16–29. doi:10.1002/ana.21489

    CAS  PubMed  Google Scholar 

  • Jenner P (2008c) Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9(9):665–677. doi:10.1038/nrn2471

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50(1–3):85–90

    Article  CAS  PubMed  Google Scholar 

  • Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, Qiu Z, Roberts AC, Roe AW, Wang X, Zhou H, Wang L, Zhang F, Desimone R, Feng G (2016) Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 19(9):1123–1130. doi:10.1038/nn.4362

    Article  PubMed  CAS  Google Scholar 

  • Joers V, Dilley K, Rahman S, Jones C, Shultz J, Simmons H, Emborg ME (2014) Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates. PLoS ONE 9(8):e104850. doi:10.1371/journal.pone.0104850

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson LA, Xu W, Baker KB, Zhang J, Vitek JL (2015) Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate. J Neurophysiol 113(7):2549–2554. doi:10.1152/jn.00997.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston TM, Fox SH (2015) Symptomatic Models of Parkinson’s Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Curr Top Behav Neurosci 22:221–235. doi:10.1007/7854_2014_352

    Article  CAS  PubMed  Google Scholar 

  • Johnston LC, Eberling J, Pivirotto P, Hadaczek P, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum Gene Ther 20(5):497–510. doi:10.1089/hum.2008.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM (2010) Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther 333(3):865–873. doi:10.1124/jpet.110.166629

    Article  CAS  PubMed  Google Scholar 

  • Johnston TH, Huot P, Fox SH, Koprich JB, Szeliga KT, James JW, Graef JD, Letchworth SR, Jordan KG, Hill MP, Brotchie JM (2013) TC-8831, a nicotinic acetylcholine receptor agonist, reduces L-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology 73:337–347. doi:10.1016/j.neuropharm.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J (2015) Turning On Lights to Stop Neurodegeneration: the Potential of Near Infrared Light Therapy in Alzheimer’s and Parkinson’s Disease. Front Neurosci 9:500. doi:10.3389/fnins.2015.00500

    PubMed  Google Scholar 

  • Jourdain VA, Gregoire L, Morissette M, Morin N, Parent M, Di Paolo T (2013) Potentiation of response to low doses of levodopa in MPTP-injected monkeys by chemical unilateral subthalamotomy. J Neurosurg 118(1):180–191. doi:10.3171/2012.9.JNS12295

    Article  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. doi:10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol 12(2):65–66. doi:10.1038/nrneurol.2015.249

    Article  CAS  PubMed  Google Scholar 

  • Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying strategies for Parkinson’s disease. Mov Disord 30(11):1442–1450. doi:10.1002/mds.26354

    Article  CAS  PubMed  Google Scholar 

  • Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326. doi:10.1111/ane.12563

    Article  CAS  PubMed  Google Scholar 

  • Kanaan NM, Manfredsson FP (2012) Loss of functional alpha-synuclein: a toxic event in Parkinson’s disease? J Parkinsons Dis 2(4):249–267. doi:10.3233/JPD-012138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162(2):321–327. doi:10.1006/exnr.2000.7350

    Article  CAS  PubMed  Google Scholar 

  • Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105. doi:10.1016/S0140-6736(07)60982-9

    Article  CAS  PubMed  Google Scholar 

  • Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ, Parkinson’s Disease Research Group of the United K (2008) Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 71(7):474–480. doi:10.1212/01.wnl.0000310812.43352.66

    Article  Google Scholar 

  • Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev (2):CD003735. doi:10.1002/14651858.CD003735

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77636: a potent and selective dopamine D1 receptor agonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229(2–3):203–209

    Article  CAS  PubMed  Google Scholar 

  • Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, Narrow WC, Bowers WJ, Federoff HJ, Forsayeth J, Bankiewicz KS (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30(28):9567–9577. doi:10.1523/JNEUROSCI.0942-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Morizane A, Doi D, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J (2011) Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinsons Dis 1(4):395–412. doi:10.3233/JPD-2011-11070

    CAS  PubMed  Google Scholar 

  • Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(5):2884–2889. doi:10.1073/pnas.0536383100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirik D, Cederfjall E, Halliday G, Petersen A (2016) Gene therapy for Parkinson’s disease: disease modification by GDNF family of ligands. Neurobiol Dis. doi:10.1016/j.nbd.2016.09.008

    PubMed  Google Scholar 

  • Kish SJ (2003) Biochemistry of Parkinson’s disease: is a brain serotonergic deficiency a characteristic of idiopathic Parkinson’s disease? Adv Neurol 91:39–49

    CAS  PubMed  Google Scholar 

  • Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131(Pt 1):120–131. doi:10.1093/brain/awm239

    PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. doi:10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  • Klingelhoefer L, Reichmann H (2017) Parkinson’s disease as a multisystem disorder. J Neural Transm (Vienna). doi:10.1007/s00702-017-1692-0

    Google Scholar 

  • Klockgether T, Turski L (1993) Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia. Ann Neurol 34(4):585–593. doi:10.1002/ana.410340413

    Article  CAS  PubMed  Google Scholar 

  • Ko WK, Camus SM, Li Q, Yang J, McGuire S, Pioli EY, Bezard E (2016) An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 110 (Pt A):48-58. doi:10.1016/j.neuropharm.2016.07.012

  • Kondo T, Mizuno Y, Japanese Istradefylline Study G (2015) A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol 38(2):41–46. doi:10.1097/WNF.0000000000000073

    Article  CAS  Google Scholar 

  • Koprich JB, Fox SH, Johnston TH, Goodman A, Le Bourdonnec B, Dolle RE, DeHaven RN, DeHaven-Hudkins DL, Little PJ, Brotchie JM (2011) The selective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in MPTP-lesioned macaque model of Parkinson’s disease. Mov Disord 26(7):1225–1233. doi:10.1002/mds.23631

    Article  PubMed  Google Scholar 

  • Korczyn AD (2001) Dementia in Parkinson’s disease. J Neurol 248 Suppl 3:III1-4

  • Korczyn AD, Brunt ER, Larsen JP, Nagy Z, Poewe WH, Ruggieri S (1999) A 3-year randomized trial of ropinirole and bromocriptine in early Parkinson’s disease. The 053 Study Group. Neurology 53(2):364–370

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Brundin P (2009) Lewy body pathology in long-term fetal nigral transplants: is Parkinson’s disease transmitted from one neural system to another? Neuropsychopharmacology 34(1):254. doi:10.1038/npp.2008.161

    Article  PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell J 3rd, Gasmi M, Bartus RT (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60(6):706–715. doi:10.1002/ana.21032

    Article  CAS  PubMed  Google Scholar 

  • Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. NeuroReport 11(1):211–213

    Article  CAS  PubMed  Google Scholar 

  • Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551. doi:10.1038/nature10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuoppamaki M, Al-Barghouthy G, Jackson MJ, Smith LA, Quinn N, Jenner P (2007) L-dopa dose and the duration and severity of dyskinesia in primed MPTP-treated primates. J Neural Transm (Vienna) 114(9):1147–1153. doi:10.1007/s00702-007-0727-3

    Article  CAS  Google Scholar 

  • Kupsch A, Sautter J, Gotz ME, Breithaupt W, Schwarz J, Youdim MB, Riederer P, Gerlach M, Oertel WH (2001) Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J Neural Transm (Vienna) 108(8–9):985–1009. doi:10.1007/s007020170018

    Article  CAS  Google Scholar 

  • Kurowska Z, Kordower JH, Stoessl AJ, Burke RE, Brundin P, Yue Z, Brady ST, Milbrandt J, Trapp BD, Sherer TB, Medicetty S (2016) Is Axonal Degeneration a Key Early Event in Parkinson’s Disease? J Parkinsons Dis 6(4):703–707. doi:10.3233/JPD-160881

    Article  PubMed  Google Scholar 

  • Lang AE (2007) The progression of Parkinson disease: a hypothesis. Neurology 68(12):948–952. doi:10.1212/01.wnl.0000257110.91041.5d

    Article  PubMed  Google Scholar 

  • Lang AE (2010) Clinical trials of disease-modifying therapies for neurodegenerative diseases: the challenges and the future. Nat Med 16(11):1223–1226. doi:10.1038/nm.2220

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339(15):1044–1053. doi:10.1056/NEJM199810083391506

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59(3):459–466. doi:10.1002/ana.20737

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P (1984) Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson’s disease. Can J Neurol Sci 11(1 Suppl):160–165

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Rebert CS, Irwin I (1984a) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292(2):390–394

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Langston EB, Irwin I (1984b) MPTP-induced parkinsonism in human and non-human primates–clinical and experimental aspects. Acta Neurol Scand Suppl 100:49–54

    CAS  PubMed  Google Scholar 

  • Langston JW, Quik M, Petzinger G, Jakowec M, Di Monte DA (2000) Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann Neurol 47(4 Suppl 1):S79–89

    CAS  PubMed  Google Scholar 

  • Lee T, Seeman P, Rajput A, Farley IJ, Hornykiewicz O (1978) Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 273(5657):59–61

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Stern GM (1981) Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 44(11):1020–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees AJ, Haddad S, Shaw KM, Kohout LJ, Stern GM (1978) Bromocriptine in parkinsonism. A long-term study. Arch Neurol 35(8):503–505

    Article  CAS  PubMed  Google Scholar 

  • LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10(4):309–319. doi:10.1016/S1474-4422(11)70039-4

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503. doi:10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25(8):1091–1096. doi:10.1002/mds.23012

    Article  PubMed  Google Scholar 

  • Lieu CA, Subramanian T (2012) The interhemispheric connections of the striatum: implications for Parkinson’s disease and drug-induced dyskinesias. Brain Res Bull 87(1):1–9. doi:10.1016/j.brainresbull.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345(8942):91–95

    Article  CAS  PubMed  Google Scholar 

  • Lindholm D, Makela J, Di Liberto V, Mudo G, Belluardo N, Eriksson O, Saarma M (2016) Current disease modifying approaches to treat Parkinson’s disease. Cell Mol Life Sci 73(7):1365–1379. doi:10.1007/s00018-015-2101-1

    Article  CAS  PubMed  Google Scholar 

  • Lingor P, Koch JC, Tonges L, Bahr M (2012) Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 349(1):289–311. doi:10.1007/s00441-012-1362-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Yue F, Tang WP, Chan P (2009) An objective measurement of locomotion behavior for hemiparkinsonian cynomolgus monkeys. J Neurosci Methods 183(2):188–194. doi:10.1016/j.jneumeth.2009.06.037

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, Si W, Zhou J, Tan T, Li T, Ji S, Xue Z, Luo Y, Cheng L, Zhou Q, Li S, Sun YE, Ji W (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14(3):323–328. doi:10.1016/j.stem.2014.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Bianco C, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T, Aebischer P (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 101(50):17510–17515. doi:10.1073/pnas.0405313101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113(22):5476–5479. doi:10.1182/blood-2009-02-204800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A (2017) The Contribution of alpha-Synuclein Spreading to Parkinson’s Disease Synaptopathy. Neural Plast 2017:5012129. doi:10.1155/2017/5012129

    Article  PubMed  PubMed Central  Google Scholar 

  • Loschmann PA, Chong PN, Nomoto M, Tepper PG, Horn AS, Jenner P, Marsden CD (1989) Stereoselective reversal of MPTP-induced parkinsonism in the marmoset after dermal application of N-0437. Eur J Pharmacol 166(3):373–380

    Article  CAS  PubMed  Google Scholar 

  • Loschmann PA, Smith LA, Lange KW, Jahnig P, Jenner P, Marsden CD (1992) Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology 109(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Lotia M, Jankovic J (2016) New and emerging medical therapies in Parkinson’s disease. Expert Opin Pharmacother 17(7):895–909. doi:10.1517/14656566.2016.1149163

    Article  CAS  PubMed  Google Scholar 

  • Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11(7):703–704. doi:10.1038/nm0705-703

    Article  CAS  PubMed  Google Scholar 

  • Low K, Aebischer P (2012) Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis 48(2):189–201. doi:10.1016/j.nbd.2011.12.038

    Article  PubMed  CAS  Google Scholar 

  • Luquin MR, Laguna J, Obeso JA (1992) Selective D2 receptor stimulation induces dyskinesia in parkinsonian monkeys. Ann Neurol 31(5):551–554. doi:10.1002/ana.410310514

    Article  CAS  PubMed  Google Scholar 

  • Mallet N, Pogosyan A, Marton LF, Bolam JP, Brown P, Magill PJ (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28(52):14245–14258. doi:10.1523/JNEUROSCI.4199-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney R, Shanks S, Maloney J (2010) The application of low-level laser therapy for the symptomatic care of late stage Parkinson’sdisease:a non-controlled, non-randomized study [Abstract]. Am Soc Laser Med Surg:185

  • Manson AJ, Turner K, Lees AJ (2002) Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: long-term follow-up study of 64 patients. Mov Disord 17(6):1235–1241. doi:10.1002/mds.10281

    Article  PubMed  Google Scholar 

  • Maratos EC, Jackson MJ, Pearce RK, Jenner P (2001) Antiparkinsonian activity and dyskinesia risk of ropinirole and L-DOPA combination therapy in drug naive MPTP-lesioned common marmosets (Callithrix jacchus). Mov Disord 16(4):631–641

    Article  CAS  PubMed  Google Scholar 

  • Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7(5):400–408. doi:10.1016/S1474-4422(08)70065-6

    Article  PubMed  Google Scholar 

  • Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, Vitek J, Stacy M, Turner D, Verhagen L, Bakay R, Watts R, Guthrie B, Jankovic J, Simpson R, Tagliati M, Alterman R, Stern M, Baltuch G, Starr PA, Larson PS, Ostrem JL, Nutt J, Kieburtz K, Kordower JH, Olanow CW (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9(12):1164–1172. doi:10.1016/S1474-4422(10)70254-4

    Article  CAS  PubMed  Google Scholar 

  • Marras C, Chaudhuri KR (2016) Nonmotor features of Parkinson’s disease subtypes. Mov Disord 31(8):1095–1102. doi:10.1002/mds.26510

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fernandez R, Schmitt E, Martinez-Martin P, Krack P (2016) The hidden sister of motor fluctuations in Parkinson’s disease: a review on nonmotor fluctuations. Mov Disord 31(8):1080–1094. doi:10.1002/mds.26731

    Article  CAS  PubMed  Google Scholar 

  • Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134(Pt 7):2057–2073. doi:10.1093/brain/awr137

    Article  PubMed  PubMed Central  Google Scholar 

  • Maswood N, Grondin R, Zhang Z, Stanford JA, Surgener SP, Gash DM, Gerhardt GA (2002) Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged Rhesus monkeys. Neurobiol Aging 23(5):881–889

    Article  CAS  PubMed  Google Scholar 

  • Mayeux R, Stern Y, Mulvey K, Cote L (1985) Reappraisal of temporary levodopa withdrawal (“drug holiday”) in Parkinson’s disease. N Engl J Med 313(12):724–728. doi:10.1056/NEJM198509193131204

    Article  CAS  PubMed  Google Scholar 

  • McCormack AL, Mak SK, Shenasa M, Langston WJ, Forno LS, Di Monte DA (2008) Pathologic modifications of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. J Neuropathol Exp Neurol 67(8):793–802. doi:10.1097/NEN.0b013e318180f0bd

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercuri NB, Bernardi G (2005) The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci 26(7):341–344. doi:10.1016/j.tips.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  • Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70(2):163–171. doi:10.1001/2013.jamaneurol.45

    Article  PubMed  Google Scholar 

  • Mitchell IJ, Cross AJ, Sambrook MA, Crossman AR (1985) Sites of the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the macaque monkey include the ventral tegmental area and the locus coeruleus. Neurosci Lett 61(1–2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SJ, Richardson RT, Baker FH, DeLong MR (1987) The primate globus pallidus: neuronal activity related to direction of movement. Exp Brain Res 68(3):491–505

    CAS  PubMed  Google Scholar 

  • Mitchell IJ, Hughes N, Carroll CB, Brotchie JM (1995) Reversal of parkinsonian symptoms by intrastriatal and systemic manipulations of excitatory amino acid and dopamine transmission in the bilateral 6-OHDA lesioned marmoset. Behav Pharmacol 6(5–6):492–507

    CAS  PubMed  Google Scholar 

  • Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23(4):377–381. doi:10.1089/hum.2011.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi Y, Zhang Z, Ovadia A, Lapchak PA, Collins F, Hilt D, Lebel C, Kryscio R, Gash DM (1997) Glial cell line-derived neurotrophic factor-levodopa interactions and reduction of side effects in parkinsonian monkeys. Ann Neurol 42(2):208–214. doi:10.1002/ana.410420212

    Article  CAS  PubMed  Google Scholar 

  • Mones RJ (1973) Experimental Dyskinesias in Normal Rhesus Monkeys. In: Barbeau A, Chase TN, Paulson GW (eds) Advanced Neurology, vol 1. Raven Press, New York, pp 665–669

    Google Scholar 

  • Morin N, Di Paolo T (2014) Interaction of adenosine receptors with other receptors from therapeutic perspective in Parkinson’s disease. Int Rev Neurobiol 119:151–167. doi:10.1016/B978-0-12-801022-8.00007-6

    Article  PubMed  Google Scholar 

  • Morin N, Gregoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2010) Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 58(7):981–986. doi:10.1016/j.neuropharm.2009.12.024

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Gregoire L, Morissette M, Desrayaud S, Gomez-Mancilla B, Gasparini F, Di Paolo T (2013a) MPEP, an mGlu5 receptor antagonist, reduces the development of L-DOPA-induced motor complications in de novo parkinsonian monkeys: biochemical correlates. Neuropharmacology 66:355–364. doi:10.1016/j.neuropharm.2012.07.036

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Morissette M, Gregoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2013b) Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian monkeys. Neuropharmacology 73:216–231. doi:10.1016/j.neuropharm.2013.05.028

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Jourdain VA, Di Paolo T (2014) Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 256:105–116. doi:10.1016/j.expneurol.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Morissette M, Gregoire L, Di Paolo T (2015a) Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys. Prog Neuropsychopharmacol Biol Psychiatry 56:27–38. doi:10.1016/j.pnpbp.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Morissette M, Gregoire L, Rajput A, Rajput AH, Di Paolo T (2015b) Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications. Neuropharmacology 99:356–368. doi:10.1016/j.neuropharm.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bedard PJ, Di Paolo T (1997) Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy. Brain Res Mol Brain Res 49(1–2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Goulet M, Grondin R, Blanchet P, Bedard PJ, Di Paolo T, Levesque D (1998) Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci 10(8):2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bedard PJ, Di Paolo T (2006a) Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: effect on adenosine A2A receptors. Synapse 60(3):239–250. doi:10.1002/syn.20295

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bedard PJ, Di Paolo T (2006b) Prevention of levodopa-induced dyskinesias by a selective NR1A/2B N-methyl-D-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov Disord 21(1):9–17. doi:10.1002/mds.20654

    Article  PubMed  Google Scholar 

  • Morissette M, Morin N, Gregoire L, Rajput A, Rajput AH, Di Paolo T (2016) Brain alpha7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients. Biochem Pharmacol 109:62–69. doi:10.1016/j.bcp.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  • Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J (2013) Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Reports 1 (4):283-292. doi:10.1016/j.stemcr.2013.08.007

  • Moro C, El Massri N, Darlot F, Torres N, Chabrol C, Agay D, Auboiroux V, Johnstone DM, Stone J, Mitrofanis J, Benabid AL (2016) Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson’s disease. Brain Res 1648 (Pt A):19-26. doi:10.1016/j.brainres.2016.07.005

  • Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang L, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terao K, Nakano I, Ozawa K (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13(3):345–354. doi:10.1089/10430340252792486

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735. doi:10.1038/mt.2010.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74(4):1800–1805

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Yu Y, Bernat A, Yang S, He X, Guo X, Chen D, Chen Y, Ji S, Si W, Lv Y, Tan T, Wei Q, Wang H, Shi L, Guan J, Zhu X, Afanassieff M, Savatier P, Zhang K, Zhou Q, Ji W (2010) Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci U S A 107(41):17663–17667. doi:10.1073/pnas.1006563107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843. doi:10.1016/j.cell.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Guo X, Chen Y, Wang CE, Gao J, Yang W, Kang Y, Si W, Wang H, Yang SH, Li S, Ji W, Li XJ (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24(8):2308–2317. doi:10.1093/hmg/ddu748

    Article  CAS  PubMed  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1988) The D1 agonist SKF 38393 inhibits the antiparkinsonian activity of the D2 agonist LY 171555 in the MPTP-treated marmoset. Neurosci Lett 93(2–3):275–280

    Article  CAS  PubMed  Google Scholar 

  • Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, Schrag A (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72(6):893–901. doi:10.1002/ana.23687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutt JG, Obeso JA, Stocchi F (2000) Continuous dopamine-receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 23(10 Suppl):S109–115

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD, Simpson RK Jr, Stacy M, Wooten GF, Factor IGSGIiGcl-dn (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Macias R, Alvarez L, Guridi J, Vitek J, DeLong MR (2000) Pathophysiologic basis of surgery for Parkinson’s disease. Neurology 55(12 Suppl 6):S7–12

    CAS  PubMed  Google Scholar 

  • Obinu MC, Reibaud M, Blanchard V, Moussaoui S, Imperato A (2002) Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov Disord 17(1):13–19

    Article  PubMed  Google Scholar 

  • Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(Suppl 1):325–337. doi:10.1111/jnc.13750

    Article  CAS  PubMed  Google Scholar 

  • Oiwa Y, Nakai K, Itakura T (2006) Histological effects of intraputaminal infusion of glial cell line-derived neurotrophic factor in Parkinson disease model macaque monkeys. Neurol Med Chir (Tokyo) 46 (6):267-275; discussion 275-266

  • Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, Suelter M, Jacobson CEt, Wang X, Gordon CW, Zeilman P, Romrell J, Martin P, Ward H, Rodriguez RL, Foote KD (2009) Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 65(5):586–595. doi:10.1002/ana.21596

    Article  PubMed  PubMed Central  Google Scholar 

  • Olanow CW, Obeso JA (2000) Pulsatile stimulation of dopamine receptors and levodopa-induced motor complications in Parkinson’s disease: implications for the early use of COMT inhibitors. Neurology 55 (11 Suppl 4):S72-77; discussion S78-81

  • Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5(8):677–687. doi:10.1016/S1474-4422(06)70521-X

    Article  CAS  PubMed  Google Scholar 

  • Olanow C, Bartus RT, Baumann TL, Factor S, Boulis N, Stacy M, Turner DA, Marks W, Larson P, Starr PA, Jankovic J, Simpson R, Watts R, Guthrie B, Poston K, Henderson JM, Stern M, Baltuch G, Goetz CG, Herzog C, Kordower JH, Alterman R, Lozano AM, Lang AE (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78(2):248–257. doi:10.1002/ana.24436

    Article  CAS  Google Scholar 

  • Ouattara B, Belkhir S, Morissette M, Dridi M, Samadi P, Gregoire L, Meltzer LT, Di Paolo T (2009) Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias. J Mol Neurosci 38(2):128–142. doi:10.1007/s12031-008-9137-8

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Gasparini F, Morissette M, Gregoire L, Samadi P, Gomez-Mancilla B, Di Paolo T (2010a) Effect of L-Dopa on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 113(3):715–724. doi:10.1111/j.1471-4159.2010.06635.x

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Hoyer D, Gregoire L, Morissette M, Gasparini F, Gomez-Mancilla B, Di Paolo T (2010b) Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience 167(4):1160–1167. doi:10.1016/j.neuroscience.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  • Page RD, Sambrook MA, Crossman AR (1993) Thalamotomy for the alleviation of levodopa-induced dyskinesia: experimental studies in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated parkinsonian monkey. Neuroscience 55(1):147–165

    Article  CAS  PubMed  Google Scholar 

  • Pahwa R, Lyons KE (2009) Levodopa-related wearing-off in Parkinson’s disease: identification and management. Curr Med Res Opin 25(4):841–849. doi:10.1185/03007990902779319

    Article  CAS  PubMed  Google Scholar 

  • Pahwa R, Tanner CM, Hauser RA, Sethi K, Isaacson S, Truong D, Struck L, Ruby AE, McClure NL, Went GT, Stempien MJ (2015) Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord 30(6):788–795. doi:10.1002/mds.26159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugieres P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383(9923):1138–1146. doi:10.1016/S0140-6736(13)61939-X

    Article  CAS  PubMed  Google Scholar 

  • Parkinson Study Group (1997) Entacapone improves motor fluctuations in levodopa-treated Parkinson’s disease patients. Parkinson Study Group. Ann Neurol 42(5):747–755. doi:10.1002/ana.410420511

    Article  Google Scholar 

  • Parkinson Study Group (2000) Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. Parkinson Study Group. JAMA 284(15):1931–1938

    Google Scholar 

  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57(2):298–302. doi:10.1002/ana.20374

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK (1999) L-dopa and dyskinesias in normal monkeys. Mov Disord 14(Suppl 1):9–12

    PubMed  Google Scholar 

  • Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord 10(6):731–740. doi:10.1002/mds.870100606

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Banerji T, Jenner P, Marsden CD (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP-treated marmoset. Mov Disord 13(2):234–241. doi:10.1002/mds.870130207

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Heikkila M, Linden IB, Jenner P (2001) L-dopa induces dyskinesia in normal monkeys: behavioural and pharmacokinetic observations. Psychopharmacology 156(4):402–409

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Kruger J, Jenner P (2002) The monoamine reuptake blocker brasofensine reverses akinesia without dyskinesia in MPTP-treated and levodopa-primed common marmosets. Mov Disord 17(5):877–886. doi:10.1002/mds.10238

    Article  PubMed  Google Scholar 

  • Perez-Lloret S, Peralta MC, Barrantes FJ (2016) Pharmacotherapies for Parkinson’s disease symptoms related to cholinergic degeneration. Expert Opin Pharmacother 17(18):2405–2415. doi:10.1080/14656566.2016.1254189

    Article  CAS  PubMed  Google Scholar 

  • Pessiglione M, Guehl D, Hirsch EC, Feger J, Tremblay L (2004) Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism. I. Effects of task complexity. Eur J Neurosci 19(2):426–436

    Article  PubMed  Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44(3):591–605

    Article  CAS  PubMed  Google Scholar 

  • Pinna A (2014) Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28(5):455–474. doi:10.1007/s40263-014-0161-7

    Article  CAS  PubMed  Google Scholar 

  • Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Oertel WH, Bjorklund A, Lindvall O, Piccini P (2012) Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med 4 (128):128ra141. doi:10.1126/scitranslmed.3003391

  • Pont-Sunyer C, Hotter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D, Brucke T, Bayes A, Wenzel K, Infante J, Zach H, Pirker W, Posada IJ, Alvarez R, Ispierto L, De Fabregues O, Callen A, Palasi A, Aguilar M, Marti MJ, Valldeoriola F, Salamero M, Poewe W, Tolosa E (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30(2):229–237. doi:10.1002/mds.26077

    Article  PubMed  Google Scholar 

  • Porras G, Li Q, Bezard E (2012) Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med 2(3):a009308. doi:10.1101/cshperspect.a009308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Postuma RB, Berg D (2016) Advances in markers of prodromal Parkinson disease. Nat Rev Neurol 12(11):622–634. doi:10.1038/nrneurol.2016.152

    Article  CAS  PubMed  Google Scholar 

  • Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. doi:10.1002/mds.26424

    Article  PubMed  Google Scholar 

  • Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM (2014) Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol 256:133–143. doi:10.1016/j.expneurol.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13):1583–1590. doi:10.1002/mds.25945

    Article  PubMed  Google Scholar 

  • Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67(3):631–647

    Article  CAS  PubMed  Google Scholar 

  • Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA (2005) Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20(3):898–906. doi:10.1016/j.nbd.2005.05.028

    Article  CAS  PubMed  Google Scholar 

  • Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19(4):407–415. doi:10.1016/j.parkreldis.2013.01.020

    Article  PubMed  Google Scholar 

  • Quek C, Hill AF (2016) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2016.09.090

    PubMed  Google Scholar 

  • Quik M, Police S, He L, Di Monte DA, Langston JW (2000) Expression of D(3) receptor messenger RNA and binding sites in monkey striatum and substantia nigra after nigrostriatal degeneration: effect of levodopa treatment. Neuroscience 98(2):263–273

    Article  CAS  PubMed  Google Scholar 

  • Rajput AH, Voll A, Rajput ML, Robinson CA, Rajput A (2009) Course in Parkinson disease subtypes: a 39-year clinicopathologic study. Neurology 73(3):206–212. doi:10.1212/WNL.0b013e3181ae7af1

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Poewe W, Lees A, Aristin M, Salin L, Juhel N, Waldhauser L, Schindler T, Group AS (2008) Tesofensine (NS 2330), a monoamine reuptake inhibitor, in patients with advanced Parkinson disease and motor fluctuations: the ADVANS Study. Arch Neurol 65(5):577–583. doi:10.1001/archneur.65.5.577

    Article  Google Scholar 

  • Rascol A, Guiraud B, Montastruc JL, David J, Clanet M (1979) Long-term treatment of Parkinson’s disease with bromocriptine. J Neurol Neurosurg Psychiatry 42(2):143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rascol O, Brooks DJ, Brunt ER, Korczyn AD, Poewe WH, Stocchi F (1998) Ropinirole in the treatment of early Parkinson’s disease: a 6-month interim report of a 5-year levodopa-controlled study. 056 Study Group. Mov Disord 13(1):39–45. doi:10.1002/mds.870130111

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342(20):1484–1491. doi:10.1056/NEJM200005183422004

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, Tolosa E, Group Ls (2005) Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 365(9463):947–954. doi:10.1016/S0140-6736(05)71083-7

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Fox S, Gasparini F, Kenney C, Di Paolo T, Gomez-Mancilla B (2014) Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 20(9):947–956. doi:10.1016/j.parkreldis.2014.05.003

    Article  PubMed  Google Scholar 

  • Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20(22):8559–8571

    CAS  PubMed  Google Scholar 

  • Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104(29):12175–12180. doi:10.1073/pnas.0704091104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redmond DE Jr, Vinuela A, Kordower JH, Isacson O (2008) Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson’s disease. Neurobiol Dis 29(1):103–116. doi:10.1016/j.nbd.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  • Reijnders JS, Ehrt U, Lousberg R, Aarsland D, Leentjens AF (2009) The association between motor subtypes and psychopathology in Parkinson’s disease. Parkinsonism Relat Disord 15(5):379–382. doi:10.1016/j.parkreldis.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  • Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT(2A) receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33(10):1823–1831. doi:10.1111/j.1460-9568.2011.07675.x

    Article  PubMed  Google Scholar 

  • Riahi G, Morissette M, Levesque D, Rouillard C, Samadi P, Parent M, Di Paolo T (2012) Effect of chronic l-DOPA treatment on 5-HT(1A) receptors in parkinsonian monkey brain. Neurochem Int 61(7):1160–1171. doi:10.1016/j.neuint.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Laux G (2011) MAO-inhibitors in Parkinson’s Disease. Exp Neurobiol 20(1):1–17. doi:10.5607/en.2011.20.1.1

    PubMed  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38(3–4):277–301

    Article  CAS  PubMed  Google Scholar 

  • Rinne UK, Bracco F, Chouza C, Dupont E, Gershanik O, Marti Masso JF, Montastruc JL, Marsden CD, Dubini A, Orlando N, Grimaldi R (1997) Cabergoline in the treatment of early Parkinson’s disease: results of the first year of treatment in a double-blind comparison of cabergoline and levodopa. The PKDS009 Collaborative Study Group. Neurology 48(2):363–368

    Article  CAS  PubMed  Google Scholar 

  • Rinne UK, Bracco F, Chouza C, Dupont E, Gershanik O, Marti Masso JF, Montastruc JL, Marsden CD (1998a) Early treatment of Parkinson’s disease with cabergoline delays the onset of motor complications. Results of a double-blind levodopa controlled trial. The PKDS009 Study Group. Drugs 55 Suppl 1:23-30

  • Rinne UK, Larsen JP, Siden A, Worm-Petersen J (1998b) Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Nomecomt Study Group. Neurology 51(5):1309–1314

    CAS  Google Scholar 

  • Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44(3 Suppl 1):S175–188

    Article  CAS  PubMed  Google Scholar 

  • Roeltgen DP, Schneider JS (1994) Task persistence and learning ability in normal and chronic low dose MPTP-treated monkeys. Behav Brain Res 60(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum R, Zimnik A, Zheng F, Turner RS, Alzheimer C, Doiron B, Rubin JE (2014) Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiol Dis 62:86–99. doi:10.1016/j.nbd.2013.09.006

    Article  PubMed  Google Scholar 

  • Ruottinen HM, Rinne UK (1996) A double-blind pharmacokinetic and clinical dose-response study of entacapone as an adjuvant to levodopa therapy in advanced Parkinson’s disease. Clin Neuropharmacol 19(4):283–296

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, Bezard E, Cenci MA (2010a) A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39(3):352–361. doi:10.1016/j.nbd.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010b) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68(5):619–628. doi:10.1002/ana.22097

    Article  CAS  PubMed  Google Scholar 

  • Ryoo HL, Pierrotti D, Joyce JN (1998) Dopamine D3 receptor is decreased and D2 receptor is elevated in the striatum of Parkinson’s disease. Mov Disord 13(5):788–797. doi:10.1002/mds.870130506

    Article  CAS  PubMed  Google Scholar 

  • Salvatore MF, Zhang JL, Large DM, Wilson PE, Gash CR, Thomas TC, Haycock JW, Bing G, Stanford JA, Gash DM, Gerhardt GA (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem 90(1):245–254. doi:10.1111/j.1471-4159.2004.02496.x

    Article  CAS  PubMed  Google Scholar 

  • Samadi P, Gregoire L, Rouillard C, Bedard PJ, Di Paolo T, Levesque D (2006) Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol 59(2):282–288. doi:10.1002/ana.20738

    Article  CAS  PubMed  Google Scholar 

  • Samadi P, Gregoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Bedard PJ, Di Paolo T (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29(7):1040–1051. doi:10.1016/j.neurobiolaging.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Sankar T, Lozano AM (2011) Surgical approach to l-dopa-induced dyskinesias. Int Rev Neurobiol 98:151–171. doi:10.1016/B978-0-12-381328-2.00006-7

    Article  PubMed  Google Scholar 

  • Santana M, Palmer T, Simplicio H, Fuentes R, Petersson P (2015) Characterization of long-term motor deficits in the 6-OHDA model of Parkinson’s disease in the common marmoset. Behav Brain Res 290:90–101. doi:10.1016/j.bbr.2015.04.037

    Article  CAS  PubMed  Google Scholar 

  • Santaniello S, Gale JT, Montgomery EB, Sarma SV (2010) Modeling the effects of Deep Brain Stimulation on sensorimotor cortex in normal and MPTP conditions. Conf Proc IEEE Eng Med Biol Soc 2010:2081–2084. doi:10.1109/IEMBS.2010.5626285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459(7246):523–527. doi:10.1038/nature08090

    Article  CAS  PubMed  Google Scholar 

  • Sassin JF (1975) Drug-induced Dyskinesia in Monkeys. In: Meldrum BS, Marsden CD (eds) Advanced Neurology, vol 10. Raven Press, New York, pp 47–54

    Google Scholar 

  • Sassin JF, Taub S, Weitzman ED (1972) Hyperkinesia and changes in behavior produced in normal monkeys by L-dopa. Neurology 22(11):1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Sauerbier A, Jenner P, Todorova A, Chaudhuri KR (2016) Non motor subtypes and Parkinson’s disease. Parkinsonism Relat Disord 22(Suppl 1):S41–46. doi:10.1016/j.parkreldis.2015.09.027

    Article  PubMed  Google Scholar 

  • Schapira AH (2009) Neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 4):S41–43. doi:10.1016/S1353-8020(09)70834-X

    Article  PubMed  Google Scholar 

  • Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, Langston JW, Mizuno Y, Hyman BT, Selkoe DJ, Kosik KS (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160(5):1655–1667. doi:10.1016/S0002-9440(10)61113-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JS, Kovelowski CJ 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res 519(1–2):122–128

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Pope-Coleman A (1995) Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in the monkey. Neurodegeneration 4(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Roeltgen DP (1993) Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys. Brain Res 615(2):351–354

    Article  CAS  PubMed  Google Scholar 

  • Seita Y, Tsukiyama T, Iwatani C, Tsuchiya H, Matsushita J, Azami T, Okahara J, Nakamura S, Hayashi Y, Hitoshi S, Itoh Y, Imamura T, Nishimura M, Tooyama I, Miyoshi H, Saitou M, Ogasawara K, Sasaki E, Ema M (2016) Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body. Sci Rep 6:24868. doi:10.1038/srep24868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Huang J, Liu L, Xu X, Han C, Zhang G, Jiang H, Li J, Lin Z, Xiong N, Wang T (2016) A Compendium of Preparation and Application of Stem Cells in Parkinson’s Disease: current Status and Future Prospects. Front Aging Neurosci 8:117. doi:10.3389/fnagi.2016.00117

    PubMed  PubMed Central  Google Scholar 

  • Shimozawa A, Ono M, Takahara D, Tarutani A, Imura S, Masuda-Suzukake M, Higuchi M, Yanai K, Hisanaga SI, Hasegawa M (2017) Propagation of pathological alpha-synuclein in marmoset brain. Acta Neuropathol Commun 5(1):12. doi:10.1186/s40478-017-0413-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiosaki K, Jenner P, Asin KE, Britton DR, Lin CW, Michaelides M, Smith L, Bianchi B, Didomenico S, Hodges L, Hong Y, Mahan L, Mikusa J, Miller T, Nikkel A, Stashko M, Witte D, Williams M (1996) ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D1 receptor agonist: in vitro characterization and effects in animal models of Parkinson’s disease. J Pharmacol Exp Ther 276(1):150–160

    CAS  PubMed  Google Scholar 

  • Siderowf A, Lang AE (2012) Premotor Parkinson’s disease: concepts and definitions. Mov Disord 27(5):608–616. doi:10.1002/mds.24954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siderowf A, Stern M (2003) Update on Parkinson disease. Ann Intern Med 138(8):651–658

    Article  PubMed  Google Scholar 

  • Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102(2):216–222. doi:10.3171/jns.2005.102.2.0216

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134(1):57–66. doi:10.1016/j.molbrainres.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Gordin A, Jenner P, Marsden CD (1997) Entacapone enhances levodopa-induced reversal of motor disability in MPTP-treated common marmosets. Mov Disord 12(6):935–945. doi:10.1002/mds.870120616

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Jackson MJ, Hansard MJ, Maratos E, Jenner P (2003) Effect of pulsatile administration of levodopa on dyskinesia induction in drug-naive MPTP-treated common marmosets: effect of dose, frequency of administration, and brain exposure. Mov Disord 18(5):487–495. doi:10.1002/mds.10394

    Article  PubMed  Google Scholar 

  • Smith LA, Jackson MJ, Johnston L, Kuoppamaki M, Rose S, Al-Barghouthy G, Del Signore S, Jenner P (2006) Switching from levodopa to the long-acting dopamine D2/D3 agonist piribedil reduces the expression of dyskinesia while maintaining effective motor activity in MPTP-treated primates. Clin Neuropharmacol 29(3):112–125. doi:10.1097/01.WNF.0000220818.71231.DF

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacy M (2009) Medical treatment of Parkinson disease. Neurol Clin 27 (3):605-631, v. doi:10.1016/j.ncl.2009.04.009

  • Staudt MD, Di Sebastiano AR, Xu H, Jog M, Schmid S, Foster P, Hebb MO (2016) Advances in Neurotrophic Factor and Cell-Based Therapies for Parkinson’s Disease: a Mini-Review. Gerontology 62(3):371–380. doi:10.1159/000438701

    Article  CAS  PubMed  Google Scholar 

  • Stocchi F (1998) Continuous dopaminergic stimulation in parkinson’s disease treatment. Focus on Parkinson’s Disease 10(1):60–63

    Google Scholar 

  • Stocchi F, Vacca L, Ruggieri S, Olanow CW (2005) Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol 62(6):905–910. doi:10.1001/archneur.62.6.905

    Article  PubMed  Google Scholar 

  • Stockwell KA, Virley DJ, Perren M, Iravani MM, Jackson MJ, Rose S, Jenner P (2008) Continuous delivery of ropinirole reverses motor deficits without dyskinesia induction in MPTP-treated common marmosets. Exp Neurol 211(1):172–179. doi:10.1016/j.expneurol.2008.01.019

    Article  CAS  PubMed  Google Scholar 

  • Stockwell KA, Scheller D, Rose S, Jackson MJ, Tayarani-Binazir K, Iravani MM, Smith LA, Olanow CW, Jenner P (2009) Continuous administration of rotigotine to MPTP-treated common marmosets enhances anti-parkinsonian activity and reduces dyskinesia induction. Exp Neurol 219(2):533–542. doi:10.1016/j.expneurol.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  • Su X, Kells AP, Huang EJ, Lee HS, Hadaczek P, Beyer J, Bringas J, Pivirotto P, Penticuff J, Eberling J, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther 20(12):1627–1640. doi:10.1089/hum.2009.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, Moore M, Osborn T, Cooper O, Spealman R, Hallett P, Isacson O (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31(8):1548–1562. doi:10.1002/stem.1415

    Article  CAS  PubMed  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324. doi:10.1111/jnc.13691

    Article  CAS  PubMed  Google Scholar 

  • Tagliaferro P, Burke RE (2016) Retrograde Axonal Degeneration in Parkinson Disease. J Parkinsons Dis 6(1):1–15. doi:10.3233/JPD-150769

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115(1):102–109. doi:10.1172/JCI21137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Tamim MK, Samadi P, Morissette M, Gregoire L, Ouattara B, Levesque D, Rouillard C, Di Paolo T (2010) Effect of non-dopaminergic drug treatment on Levodopa induced dyskinesias in MPTP monkeys: common implication of striatal neuropeptides. Neuropharmacology 58(1):286–296. doi:10.1016/j.neuropharm.2009.06.030

    Article  CAS  PubMed  Google Scholar 

  • Temlett JA, Chong PN, Oertel WH, Jenner P, Marsden CD (1988) The D-1 dopamine receptor partial agonist, CY 208-243, exhibits antiparkinsonian activity in the MPTP-treated marmoset. Eur J Pharmacol 156(2):197–206

    Article  CAS  PubMed  Google Scholar 

  • Temlett JA, Quinn NP, Jenner PG, Marsden CD, Pourcher E, Bonnet AM, Agid Y, Markstein R, Lataste X (1989) Antiparkinsonian activity of CY 208-243, a partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients with Parkinson’s disease. Mov Disord 4(3):261–265. doi:10.1002/mds.870040307

    Article  CAS  PubMed  Google Scholar 

  • Tereshchenko LV, Anisimov VN, Shul’govsky VV, Latanov AV (2015) Early Changes in Saccadic Eye Movement in Hemiparkinsonian MPTP-Treated Monkeys. Perception 44(8–9):1054–1063. doi:10.1177/0301006615596868

    Article  PubMed  Google Scholar 

  • Thannickal TC, Lai YY, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130(Pt 6):1586–1595. doi:10.1093/brain/awm097

    Article  PubMed  Google Scholar 

  • Todorova A, Jenner P, Ray Chaudhuri K (2014) Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Pract Neurol 14(5):310–322. doi:10.1136/practneurol-2013-000741

    Article  PubMed  PubMed Central  Google Scholar 

  • Togasaki DM, Tan L, Protell P, Di Monte DA, Quik M, Langston JW (2001) Levodopa induces dyskinesias in normal squirrel monkeys. Ann Neurol 50(2):254–257

    Article  CAS  PubMed  Google Scholar 

  • Togasaki DM, Hsu A, Samant M, Farzan B, DeLanney LE, Langston JW, Di Monte DA, Quik M (2005a) The Webcam system: a simple, automated, computer-based video system for quantitative measurement of movement in nonhuman primates. J Neurosci Methods 145(1–2):159–166. doi:10.1016/j.jneumeth.2004.12.010

    Article  PubMed  Google Scholar 

  • Togasaki DM, Protell P, Tan LC, Langston JW, Di Monte DA, Quik M (2005b) Dyskinesias in normal squirrel monkeys induced by nomifensine and levodopa. Neuropharmacology 48(3):398–405. doi:10.1016/j.neuropharm.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373(6512):335–339. doi:10.1038/373335a0

    Article  CAS  PubMed  Google Scholar 

  • Truong L, Allbutt H, Kassiou M, Henderson JM (2006) Developing a preclinical model of Parkinson’s disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 169(1):1–9. doi:10.1016/j.bbr.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  • Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). doi:10.1007/s00702-017-1686-y

    Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U (1976) 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther B 2(1):37–40

    CAS  PubMed  Google Scholar 

  • Utikal J, Maherali N, Kulalert W, Hochedlinger K (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122(Pt 19):3502–3510. doi:10.1242/jcs.054783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Perren A, Van den Haute C, Baekelandt V (2015) Viral vector-based models of Parkinson’s disease. Curr Top Behav Neurosci 22:271–301. doi:10.1007/7854_2014_310

    Article  PubMed  CAS  Google Scholar 

  • Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience 63(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Verhave PS, Jongsma MJ, Van den Berg RM, Vis JC, Vanwersch RA, Smit AB, Van Someren EJ, Philippens IH (2011) REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep 34(8):1119–1125. doi:10.5665/SLEEP.1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhave PS, Jongsma MJ, Van Den Berg RM, Vanwersch RA, Smit AB, Philippens IH (2012) Neuroprotective effects of riluzole in early phase Parkinson’s disease on clinically relevant parameters in the marmoset MPTP model. Neuropharmacology 62(4):1700–1707. doi:10.1016/j.neuropharm.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  • Vermeiren Y, De Deyn PP (2017) Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: the locus coeruleus story. Neurochem Int 102:22–32. doi:10.1016/j.neuint.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  • Vermilyea SC, Emborg ME (2015) alpha-Synuclein and nonhuman primate models of Parkinson’s disease. J Neurosci Methods 255:38–51. doi:10.1016/j.jneumeth.2015.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezoli J, Fifel K, Leviel V, Dehay C, Kennedy H, Cooper HM, Gronfier C, Procyk E (2011) Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson’s disease. PLoS ONE 6(8):e23952. doi:10.1371/journal.pone.0023952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidailhet M, Bonnet AM, Marconi R, Durif F, Agid Y (1999) The phenomenology of L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 14(Suppl 1):13–18

    PubMed  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL 3rd, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13(3):243–248. doi:10.1002/ana.410130304

    Article  CAS  PubMed  Google Scholar 

  • Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–58. doi:10.1007/s10654-011-9581-6

    Article  PubMed  Google Scholar 

  • Wong YC, Krainc D (2017) alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23(2):1–13. doi:10.1038/nm.4269

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Ng HH, Takahashi R, Tan EK (2016) Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry 87(7):697–702. doi:10.1136/jnnp-2015-312036

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Miocinovic S, Zhang J, Baker KB, McIntyre CC, Vitek JL (2011) Dissociation of motor symptoms during deep brain stimulation of the subthalamic nucleus in the region of the internal capsule. Exp Neurol 228(2):294–297. doi:10.1016/j.expneurol.2010.08.007

    Article  PubMed  Google Scholar 

  • Xu X, Huang J, Li J, Liu L, Han C, Shen Y, Zhang G, Jiang H, Lin Z, Xiong N, Wang T (2016) Induced pluripotent stem cells and Parkinson’s disease: modelling and treatment. Cell Prolif 49(1):14–26. doi:10.1111/cpr.12229

    Article  PubMed  Google Scholar 

  • Yamada M, Mizuno Y, Mochizuki H (2005) Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson’s disease. Hum Gene Ther 16(2):262–270. doi:10.1089/hum.2005.16.262

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453(7197):921–924. doi:10.1038/nature06975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A, Levivier M, Brotchi J, Michotte Y, Baekelandt V, Sarre S, Tenenbaum L (2009) Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson’s disease rat model. J Gene Med 11(10):899–912. doi:10.1002/jgm.1377

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Miyachi S, Kitagawa R, Wada K, Nihira T, Ren YR, Hirai Y, Ageyama N, Terao K, Shimada T, Takada M, Mizuno Y, Mochizuki H (2007) Neuronal specificity of alpha-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience 144(2):743–753. doi:10.1016/j.neuroscience.2006.09.052

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, Mizuta E, Kuno S, Sasa M, Yoshida O (1993) The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 32(4):315–321

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, Mizuta E, Yoshida O, Kuno S (1998) Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther 286(1):228–233

    CAS  PubMed  Google Scholar 

  • Youdim MB, Geldenhuys WJ, Van der Schyf CJ (2007) Why should we use multifunctional neuroprotective and neurorestorative drugs for Parkinson’s disease? Parkinsonism Relat Disord 13(Suppl 3):S281–291. doi:10.1016/S1353-8020(08)70017-8

    Article  PubMed  Google Scholar 

  • Yun JW, Ahn JB, Kang BC (2015) Modeling Parkinson’s disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care. Lab Anim Res 31(4):155–165. doi:10.5625/lar.2015.31.4.155

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Andersen A, Smith C, Grondin R, Gerhardt G, Gash D (2000) Motor slowing and parkinsonian signs in aging rhesus monkeys mirror human aging. J Gerontol A Biol Sci Med Sci 55(10):B473–480

    Article  CAS  PubMed  Google Scholar 

  • Zis P, Rizos A, Martinez-Martin P, Pal S, Silverdale M, Sharma JC, Sauerbier A, Chaudhuri KR (2014) Non-motor symptoms profile and burden in drug naive versus long-term Parkinson’s disease patients. J Parkinsons Dis 4(3):541–547. doi:10.3233/JPD-140372

    PubMed  Google Scholar 

  • Zis P, Martinez-Martin P, Sauerbier A, Rizos A, Sharma JC, Worth PF, Sophia R, Silverdale M, Chaudhuri KR (2015) Non-motor symptoms burden in treated and untreated early Parkinson’s disease patients: argument for non-motor subtypes. Eur J Neurol 22(8):1145–1150. doi:10.1111/ene.12733

    Article  CAS  PubMed  Google Scholar 

  • Zitella LM, Teplitzky BA, Yager P, Hudson HM, Brintz K, Duchin Y, Harel N, Vitek JL, Baker KB, Johnson MD (2015) Subject-specific computational modeling of DBS in the PPTg area. Front Comput Neurosci 9:93. doi:10.3389/fncom.2015.00093

    Article  PubMed  PubMed Central  Google Scholar 

  • Zweifel LS, Kuruvilla R, Ginty DD (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 6(8):615–625. doi:10.1038/nrn1727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Canadian Institutes of Health Research (MOP- 142235) to T.D.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse Di Paolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morissette, M., Di Paolo, T. Non-human primate models of PD to test novel therapies. J Neural Transm 125, 291–324 (2018). https://doi.org/10.1007/s00702-017-1722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1722-y

Keywords

Navigation