Skip to main content
Log in

New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ratio

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Altered function of kynurenine pathway has emerged recently as one of the factors contributing to the pathogenesis of depression. Neuroprotective kynurenic acid (KYNA) and neurotoxic 3-hydroxykynurenine (3-HK) are two immediate metabolites of l-kynurenine. Here, we aimed to assess the hypothesis that antidepressant drugs that may change brain KYNA/3-HK ratio. In primary astroglial cultures, fluoxetine, citalopram, amitriptyline and imipramine (1–10 μM) increased de novo production of KYNA and diminished 3-HK synthesis (24 and 48, but not 2 h). RT-PCR studies revealed that Kat1, Kat2 and kynurenine-3-monooxygenase (Kmo) gene expressions were not altered after 2 h. At 24 h, the expression of Kat1 and Kat2 genes was enhanced by all studied drugs, whereas Kmo expression was diminished by citalopram, fluoxetine and amitriptyline, but not imipramine. After 48 h, the expression of Kat1 and Kat2 was further up-regulated, and Kmo expression was down-regulated by all antidepressants. The ratio KYNA/3-HK was increased by fluoxetine, citalopram, amitriptyline and imipramine in a time-dependent manner—the effect was not observed after 2 h, modest after 24 h and robust after 48 h incubation time. Our findings indicate that the action of antidepressants may involve re-establishing of the beneficial ratio between KYNA and 3-HK. Shift in the kynurenine pathway, observed after prolonged exposure to antidepressant drugs, may partly explain their delayed therapeutic effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6:311–320

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M, Almerighi C, Verkerk R, Meltzer H, Maes M (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22(1):86–90

    Article  PubMed  CAS  Google Scholar 

  • Brown RR, Lee CM, Kohler PC, Hank JA, Storer BE, Sondel PM (1989) Altered tryptophan and neopterin metabolism in cancer patients treated with recombinant interleukin-2. Cancer Res 49:4941–4944

    PubMed  CAS  Google Scholar 

  • Carlin JM, Borden EC, Sondel PM, Byrne GI (1989) Interferon-induced indoleamine 2,3-dioxygenase activity in human mononuclear phagocytes. J Leukoc Biol 45:29–34

    PubMed  CAS  Google Scholar 

  • Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A, Cozzi A, Ballerini C, Massacesi L, Moroni F (2001) Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis. Neuroscience 102:687–695

    Article  PubMed  CAS  Google Scholar 

  • Connor TJ, Starr N, O’Sullivan JB, Harkin A (2008) Induction of indolamine 2, 3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-γ? Neurosci Lett 441:29–34

    Article  PubMed  CAS  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    Article  PubMed  CAS  Google Scholar 

  • Du F, Schmidt W, Okuno E, Kido R, Köhler C, Schwarcz RJ (1992) Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. Comp Neurol 321:477–487

    Article  CAS  Google Scholar 

  • Eastman CL, Guilarte TR (1990) The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 15:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Olsson SK, Engberg G (2009) Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs 23:91–101

    Article  PubMed  CAS  Google Scholar 

  • Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778

    Article  PubMed  CAS  Google Scholar 

  • González-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    Article  PubMed  Google Scholar 

  • Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11:3857–3863

    Article  PubMed  CAS  Google Scholar 

  • Guidetti P, Okuno E, Schwarcz R (1997) Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 50:457–465

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892

    Article  PubMed  CAS  Google Scholar 

  • Han Q, Cai T, Tagle DA, Li J (2010) Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol Life Sci 67:353–368

    Article  PubMed  CAS  Google Scholar 

  • Hashioka S, McGeer PL, Monji A, Kanba S (2009) Anti-inflammatory effects of antidepressants: possibilities for preventives against Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 9:12–19

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Quearry BJ (1988) Quantification of 3-hydroxykynurenine in brain by high-performance liquid chromatography and electrochemical detection. J Chromatogr 428:340–344

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 1:351–356

    Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increase non-alpha 7 nicotinic receptor expression; physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  • Hwang J, Zheng LT, Ock J, Lee MG, Kim SH, Lee HW, Lee WH, Park HC, Suk K (2008) Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology 55:826–834

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa I, Kitamura H, Kimura K, Saito M (2001) Brain interleukin-1 is involved in blood interleukin-6 response to immobilization stress in rats. Jap J Veterinary Res 49:19–25

    CAS  Google Scholar 

  • Kloc R, Luchowska E, Wielosz M, Owe-Larsson B, Urbanska EM (2008) Memantine increases brain production of kynurenic acid via protein kinase A-dependent mechanism. Neurosci Lett 435:169–173

    Article  PubMed  CAS  Google Scholar 

  • Knyihár-Csillik E, Csillik B, Pákáski M, Krisztin-Péva B, Dobó E, Okuno E, Vécsei L (2004) Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Neuroscience 126:899–914

    Article  PubMed  Google Scholar 

  • Kocki T, Luchowski P, Luchowska E, Wielosz M, Turski WA, Urbanska EM (2003) l-Cysteine sulphinate, endogenous sulphur-containing amino acid, inhibits rat brain kynurenic acid production via selective interference with kynurenine aminotransferase II. Neurosci Lett 346:97–100

    Article  PubMed  CAS  Google Scholar 

  • Kovaru H, Pav M, Kovaru F, Raboch J, Fiserova A (2009) Cell signalling in CNS and immune system in depression and during antidepressant treatment: focus on glial and natural killer cells. Neuro Endocrinol Lett 30:421–428

    PubMed  CAS  Google Scholar 

  • Lapin IP (1973) Kynurenines as probable participants of depression. Pharmakopsychiatr Neuropsychopharmakol 6:273–279

    PubMed  CAS  Google Scholar 

  • Lapin IP, Oxenkrug GF (1969) Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet 1:32–39

    Google Scholar 

  • Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR (2010) Peripheral and cerebral metabolic abnormalities of the tryptophan-kynurenine pathway in a murine model of major depression. Behav Brain Res 26:84–91

    Article  Google Scholar 

  • Lee S, Jeong J, Kwak Y, Park SK (2010) Depression research: where are we now? Mol Brain 3:8

    Article  PubMed  Google Scholar 

  • Leonard BE, Myint A (2006) Inflammation and depression: is there a causal connection with dementia? Neurotox Res 10:149–160

    Article  PubMed  CAS  Google Scholar 

  • Luccini E, Musante V, Neri E, Raiteri M, Pittaluga A (2007) N-methyl-d-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J Neurosci Res 85:3657–3665

    Article  PubMed  CAS  Google Scholar 

  • Luchowska E, Luchowski P, Paczek R, Ziembowicz A, Kocki T, Turski WA, Wielosz M, Lazarewicz J, Urbanska EM (2005) Dual effect of dl-homocysteine and S-adenosylhomocysteine on brain synthesis of the glutamate receptor antagonist, kynurenic acid. J Neurosci Res 79:375–382

    Article  PubMed  CAS  Google Scholar 

  • Luchowska E, Kloc R, Olajossy B, Wnuk S, Wielosz M, Owe-Larsson B, Urbanska EM (2009) β-Adrenergic enhancement of brain kynurenic acid production mediated via cAMP-related protein kinase A signaling. Prog Neuropsychopharmacol Biol Psychiatry 33:519–529

    Article  PubMed  CAS  Google Scholar 

  • Luchowski P, Luchowska E, Turski WA, Urbanska EM (2002) 1-Methyl-4-phenylpyridinium and 3-nitropropionic acid diminish cortical synthesis of kynurenic acid via interference with kynurenine aminotransferases in rats. Neurosci Lett 330:49–52

    Article  PubMed  CAS  Google Scholar 

  • Mackay GM, Forrest CM, Christofides J, Bridel MA, Mitchell S, Cowlard R, Stone TW, Darlington LG (2009) Kynurenine metabolites and inflammation markers in depressed patients treated with fluoxetine or counselling. Clin Exp Pharmacol Physiol 36:425–435

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Bosmans E, Suy E, Minner B, Raus J (1989) Impaired lymphocyte stimulation by mitogens in severely depressed patients. A complex interface with HPA-axis hyperfunction, noradrenergic activity and the ageing process. Br J Psychiatry 155:793–798

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Meltzer HY, Scharpé S, Bosmans E, Suy E, De Meester I, Calabrese J, Cosyns P (1993) Relationships between lower plasma l-tryptophan levels and immune-inflammatory variables in depression. Psychiatry Res 49:151–165

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T (2008) A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11:198–209

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Moritake K, Yamada K, Hara N, Osago H, Shibata T, Akiyama Y, Tsuchiya M (2009) Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation. J Neurosurg 111:230–237

    Article  PubMed  CAS  Google Scholar 

  • Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Schwarz MJ (2008) A psychoneuroimmunological perspective to Emil Kraepelins dichotomy: schizophrenia and major depression as inflammatory CNS disorders. Eur Arch Psychiatry Clin Neurosci 258(Suppl 2):97–106

    Article  PubMed  Google Scholar 

  • Myint AM, Kim YK, Verkerk R, Scharpé S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  PubMed  Google Scholar 

  • Obuchowicz E, Kowalski J, Labuzek K, Krysiak R, Pendzich J, Herman ZS (2006) Amitriptyline and nortriptyline inhibit interleukin-1β and tumor necrosis factor-α release by rat mixed glial microglial cell cultures. Int J Neuropsychopharmacol 9:27–35

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci USA 93:12553–12558

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    Article  PubMed  CAS  Google Scholar 

  • Oxenkrug GF (2010) Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci 47:56–63

    PubMed  Google Scholar 

  • Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118:75–85

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1985) Actions of kynurenic acid and quinolinic acid in the rat hippocampus in vivo. Exp Neurol 88:570–579

    Article  PubMed  CAS  Google Scholar 

  • Racagni G, Popoli M (2010) The pharmacological properties of antidepressants. Int Clin Psychopharmacol 25:117–131

    Article  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233

    Article  PubMed  CAS  Google Scholar 

  • Roberts RC, Du F, McCarthy KE, Okuno E, Schwarcz R (1992) Immunocytochemical localization of kynurenine aminotransferase in the rat striatum: a light and electron microscopic study. J Comp Neurol 326:82–90

    Article  PubMed  CAS  Google Scholar 

  • Russo S, Kema IP, Bosker F, Haavik J, Korf (2009) Tryptophan as an evolutionarily conserved signal to brain serotonin: molecular evidence and psychiatric implications. World J Biol Psychiatry 10:258–268

  • Rzeski W, Kocki T, Dybel A, Wejksza K, Zdzisińska B, Kandefer-Szerszeń M, Turski WA, Okuno E, Albrecht JJ (2005) Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in cultured cerebral cortical neurons. Neurosci Res 80:677–682

    Article  CAS  Google Scholar 

  • Saito K, Nowak TS Jr, Suyama K, Quearry BJ, Saito M, Crowley JS, Markey SP, Heyes MP (1993) Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem 61:2061–2070

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Managano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  PubMed  CAS  Google Scholar 

  • Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Beh Immun 21:901–912

    Article  CAS  Google Scholar 

  • Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72:411–412

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41(7):852–859

    Article  PubMed  CAS  Google Scholar 

  • Tohgi H, Abe T, Takahashi S, Saheki M, Kimura M (1995) Indoleamine concentrations in cerebrospinal fluid from patients with Alzheimer type and Binswanger type dementias before and after administration of citalopram, a synthetic serotonin uptake inhibitor. J Neural Transm Park Dis Dement Sect 9:121–131

    Article  PubMed  CAS  Google Scholar 

  • Turski WA, Gramsbergen JBP, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to l-kynurenine. J Neurochem 52:1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Urbanska E, Ikonomidou C, Sieklucka M, Turski WA (1991) Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse 9:129–135

    Article  PubMed  CAS  Google Scholar 

  • Urbanska EM, Kocki T, Saran T, Kleinrok Z, Turski WA (1997) Impairment of brain kynurenic acid production by glutamate metabotropic receptor agonists. Neuroreport 8:3501–3505

    Article  PubMed  CAS  Google Scholar 

  • Van Gool AR, Verkerk R, Fekkes D, Bannink M, Sleijfer S, Kruit WH, van der Holt B, Scharpé S, Eggermont AM, Stoter G, Hengeveld MW (2008) Neurotoxic and neuroprotective metabolites of kynurenine in patients with renal cell carcinoma treated with interferon-alpha: course and relationship with psychiatric status. Psychiatry Clin Neurosci 62:597–602

    Article  PubMed  Google Scholar 

  • Wejksza K, Rzeski W, Okuno E, Kandefer-Szerszen M, Albrecht J, Turski WA (2005) Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in oligodendrocyte cell line (OLN-93). Neurochem Res 30:963–968

    Article  PubMed  CAS  Google Scholar 

  • Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpé S, Maes M (2005) IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 10:538–544

    Article  PubMed  CAS  Google Scholar 

  • Wood K, Harwood J, Coppen A (1978) The effect of antidepressant drugs on plasma kynurenine in depressed patients. Psychopharmacology 59(3):263–266

    Article  PubMed  CAS  Google Scholar 

  • Zádori D, Klivényi P, Vámos E, Fülöp F, Toldi J, Vécsei L (2009) Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 116:1403–1409

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from Medical University in Lublin no.: DS. 450/10, 450/11, 452/09, 452/10 and 452/11. RT-PCR equipment in the Department of Genetics was sponsored by Medical University in Lublin and European Fund, Development of Eastern Poland 2007–2013, Priority Axis I Modern Economy, Operations I.3 Innovation Promotion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa M. Urbanska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocki, T., Wnuk, S., Kloc, R. et al. New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ratio. J Neural Transm 119, 235–243 (2012). https://doi.org/10.1007/s00702-011-0668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0668-8

Keywords

Navigation