Skip to main content
Log in

Prolonged therapy with antidepressants increases hippocampal level of kynurenic acid and expression of Kat1 and Kat2 genes

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Accumulating data suggest an important role of disturbed kynurenine pathway and altered glutamatergic transmission in the pathogenesis of depression. In here, we focused on detailed analyses of kynurenic acid (KYNA) status in vivo following single and 14-day administration of selected tricyclic antidepressant drugs (TCAs) and serotonin selective reuptake inhibitors (SSRIs) in rats.

Methods

The effect of antidepressants on serum and brain KYNA levels, as well as on the activity of kynurenine aminotransferases (KATs I and II) and expression of Kat1 and Kat2 genes mRNA was studied in three brain regions.

Results

Chronic, but not acute, application of antidepressants invariably stimulated KYNA production in hippocampus (amitriptyline, imipramine, fluoxetine and citalopram) and sporadically in cortex (amitriptyline, fluoxetine), whereas no change in KYNA level was observed in striatum. Cortical and hippocampal expression of Kat1 and Kat2 genes was increased after chronic, but not single administration of all studied antidepressants. The activity of semi-purified enzymatic proteins, KAT I and II, was not paralleling changes of Kat1 and Kat2 genes.

Conclusion

Our data indicate that prolonged administration of antidepressants targets expression of KYNA biosynthetic enzymes. Furthermore, post-translational modulation of KATs seems to play an important role in tuning of KYNA synthesis within brain structures. We suggest that consistent increase of hippocampal KYNA levels may represent hallmark of antidepressant activity. Mechanisms governing region- and drug-selective action of antidepressants require further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rush A.J., Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006;163(11):1905–17.

    Article  PubMed  Google Scholar 

  2. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 2015;23(1):1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pytka K, Dziubina A, Młyniec K, Dziedziczak A, Żmudzka E, Furgała A, et al. The role of glutamatergic, GABA-ergic, and cholinergic receptors in depression and antidepressant-like effect. Pharmacol Rep 2016;68(2):443–50.

    Article  CAS  PubMed  Google Scholar 

  4. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012;62(1):63–77.

    Article  CAS  PubMed  Google Scholar 

  5. Rial D, Lemos C, Pinheiro H, Duarte JM, Gonçalves FQ, Real JI, et al. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 2016;9:521, doi:https://doi.org/10.3389/fncel.2015.00521eCollection2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Oxenkrug G. Serotonin-kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 2013;14(5):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Myint AM. Kynurenines: from the perspective of major psychiatric disorders. FEBS J 2012;279(8):1375–85.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson G, Kubera M, Duda W, Lasoñ W, Berk M, Maes M. Increased IL-6 trans-signaling in depression: focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep 2013;65(6):1647–54.

    Article  CAS  PubMed  Google Scholar 

  9. Nowak G, Trullas R, Layer RT, Skolnick P, Paul IA. Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid. J Pharmacol Exp Ther 1993;265(3):1380–6.

    CAS  PubMed  Google Scholar 

  10. Dang YH, Ma XC, Zhang JC, Ren Q, Wu J, Gao CG, et al. Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 2014;20(32):5151–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 1995;675(1–2):157–64.

    Article  CAS  PubMed  Google Scholar 

  12. Nowak G, Ossowska G, Jopek R, Papp M. Strychnine-insensitive glycine/NMDA sites are altered in two stress models of depression. Pol J Pharmacol 1998;50(4–5):365–9.

    CAS  PubMed  Google Scholar 

  13. Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 2007;62(11):1310–6.

    Article  CAS  PubMed  Google Scholar 

  14. Calabrese F, Guidotti G, Molteni R, Racagni G, Mancini M, Riva MA. Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment. PLoS One 2012;7(5):e37916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryan B, Musazzi L, Mallei A, Tardito D, Gruber SH, El Khoury A, et al. Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression. Int J Neuropsychopharmacol 2009;12(4):553–9.

    Article  CAS  PubMed  Google Scholar 

  16. Németh H, Toldi J, Vécsei L. Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2005;2(3):249–60.

    Article  PubMed  Google Scholar 

  17. Moroni F, Cozzi A, Sili M, Mannaioni G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm (Vienna) 2012;119(2):133–9.

    Article  CAS  Google Scholar 

  18. Urbanska EM, Chmiel-Perzyńska I, Perzyński A, Derkacz M, Owe-Larsson B. Endogenous kynurenic acid and neurotoxicity. In: Kostrzewa R, editor. Handbook of neurotoxicity. New York: Springer; 2014. p. 421–53.

    Google Scholar 

  19. Guidetti P, Okuno E, Schwarcz R. Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 1997;50(3):457–65.

    Article  CAS  PubMed  Google Scholar 

  20. Lapin IP, Oxenkrug GF. Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet 1969;1(7586):132–6.

    Article  CAS  PubMed  Google Scholar 

  21. Müller N, Myint AM, Schwarz MJ. Inflammatory biomarkers and depression. Neurotox Res 2011;19(2):308–18.

    Article  CAS  PubMed  Google Scholar 

  22. Myint AM, Kim YK. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 2003;61(5–6):519–25.

    Article  CAS  PubMed  Google Scholar 

  23. Myint AM, Kim YK, Verkerk R, Scharpé S, Steinbusch H, Leonard B. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 2007;98(1–2):143–51.

    Article  CAS  PubMed  Google Scholar 

  24. Halaris A, Myint AM, Savant V, Meresh E, Lim E, Guillemin G, et al. Does escitalopram reduce neurotoxicity in major depression? J Psychiatr Res 2015;66–67:118–26.

    Article  PubMed  Google Scholar 

  25. Kocki T, Wnuk S, Kloc R, Kocki J, Owe-Larsson B, Urbanska EM. New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ratio. J Neural Transm (Vienna) 2012;119(2):235–43.

    Article  CAS  Google Scholar 

  26. Freemantle N, Anderson IM, Young P. Predictive value of pharmacological activity for the relative efficacy of antidepressant drugs: meta-regression analysis. Br J Psychiatry 2000;177:292–302.

    Article  CAS  PubMed  Google Scholar 

  27. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, et al. Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 2001;13(11):2141–7.

    Article  CAS  PubMed  Google Scholar 

  28. Luccini E, Musante V, Neri E, Raiteri M, Pittaluga A. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J Neurosci Res 2007;85(16):3657–65.

    Article  CAS  PubMed  Google Scholar 

  29. Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 1996;29(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  30. Savitz J, Dantzer R, Wurfel BE, Victor TA, Ford BN, Bodurka J, et al. Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology 2015;52:200–11.

    Article  CAS  PubMed  Google Scholar 

  31. Guloksuz S, Arts B, Walter S, Drukker M, Rodriguez L, Myint AM, et al. The impact of electroconvulsive therapy on the tryptophan-kynurenine metabolic pathway. Brain Behav Immun 2015;48:48–52.

    Article  CAS  PubMed  Google Scholar 

  32. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 2001;21(19):7463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR. Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 2002;7(6):525–35.

    Article  CAS  PubMed  Google Scholar 

  34. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A 2003;100(3):1387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011;35(3):744–59.

    Article  CAS  PubMed  Google Scholar 

  36. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59(12):1116–27.

    Article  CAS  PubMed  Google Scholar 

  37. Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, et al. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 2010;35(8):1734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fumagalli F, Molteni R, Calabrese F, Frasca A, Racagni G, Riva MA. Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J Neurochem 2005;93(6):1551–60.

    Article  CAS  PubMed  Google Scholar 

  39. MacGillivray L, Lagrou LM, Reynolds KB, Rosebush PI, Mazurek MF. Role of serotonin transporter inhibition in the regulation of tryptophan hydroxylase in brainstem raphe nuclei: time course and regional specificity. Neuroscience 2010;171(2):407–20.

    Article  CAS  PubMed  Google Scholar 

  40. Boyer PA, Skolnick P, Fossom LH. Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J Mol Neurosci 1998;10(3):219–33.

    Article  CAS  PubMed  Google Scholar 

  41. Luchowski P, Luchowska E, Turski WA, Urbanska EM. 1-Methyl-4-phenylpyridinium and 3-nitropropionic acid diminish cortical synthesis of kynurenic acid via interference with kynurenine aminotransferases in rats. Neurosci Lett 2002;330(1):49–52.

    Article  CAS  PubMed  Google Scholar 

  42. Kocki T, Luchowski P, Luchowska E, Wielosz M, Turski WA, Urbanska EM. L-cysteine sulphinate, endogenous sulphur-containing amino acid, inhibits rat brain kynurenic acid production via selective interference with kynurenine aminotransferase II. Neurosci Lett 2003;346(1–2):97–100.

    Article  CAS  PubMed  Google Scholar 

  43. Luchowska E, Kloc R, Olajossy B, Wnuk S, Wielosz M, Owe-Larsson B, et al. Beta-adrenergic enhancement of brain kynurenic acid production mediated via cAMP-related protein kinase A signaling. Prog Neuropsychopharmacol Biol Psychiatry 2009;33(3):519–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa M. Urbańska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocki, T., Urbańska, E.M., Kocki, J. et al. Prolonged therapy with antidepressants increases hippocampal level of kynurenic acid and expression of Kat1 and Kat2 genes. Pharmacol. Rep 70, 737–745 (2018). https://doi.org/10.1016/j.pharep.2018.01.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.01.004

Keywords

Navigation