Skip to main content
Log in

Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In recent years, an increasing number of studies has demonstrated that redox polymers can be used in simple and effective electrochemical sensing platforms due to their fast electron transfer and electrocatalytic ability. To develop more sensitive and selective electrochemical (bio)sensors, the electrocatalytic properties of redox polymers and the electrical, mechanical, and catalytic properties of various nanomaterials are combined. This review aims to summarize and contribute to the development of (bio)sensors based on polyphenazine or polytriphenylmethane redox polymers combined with nanomaterials, including carbon-based nanomaterials, metal/metal oxide, and semiconductor nanoparticles. The synthesis, preparation, and modification of these nanocomposites is presented and the contribution of each material to the performance of (bio)sensor has been be examined. It is explained how the combined use of these redox polymers and nanomaterials as a sensing platform leads to improved analytical performance of the (bio)sensors. Finally, the analytical performance characteristics and practical applications of polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical (bio)sensors are compared and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ruff A (2017) Redox polymers in bioelectrochemistry: common playgrounds and novel concepts. Curr Opin Electrochem 5:66–73

    Article  CAS  Google Scholar 

  2. Yuan M, Minteer SD (2019) Redox polymers in electrochemical systems: from methods of mediation to energy storage. Curr Opin Electrochem 15:1–6

    Article  Google Scholar 

  3. Barsan MM, Ghica ME, Brett CMA (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23

    Article  CAS  PubMed  Google Scholar 

  4. Karyakin AA, Karyakina EE, Schmidt HL (1999) Electropolymerized azines: a new group of electroactive polymers. Electroanal 11(3):149–155

    Article  CAS  Google Scholar 

  5. Ameer Q, Adeloju SB (2009) Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. Sens Actuat B-Chem 140:5–11

    Article  CAS  Google Scholar 

  6. Shrivastava S, Jadon N, Jain R (2016) Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC-Trend Anal Chem 82:55–67

    Article  CAS  Google Scholar 

  7. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18(12):8264–8277

    Article  CAS  PubMed  Google Scholar 

  8. El-Said WA, Abdeslhakour M, Choi JH, Choi JW (2020) Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 25(2):307

    Article  CAS  PubMed Central  Google Scholar 

  9. Lakard B (2020) Electrochemical biosensors based on conducting polymers: a review. Appl Sci 10(18):6614

    Article  CAS  Google Scholar 

  10. El Rhazi M, Majid S, Elbasri M, Salih FE, Oularbi L, Lafdi K (2018) Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int Nano Lett 8(2):79–99

    Article  Google Scholar 

  11. Gholivand MB, Ahmadi E, Haseli M (2017) A novel voltammetric sensor for nevirapine, based on modified graphite electrode by MWCNs/poly(methylene blue)/gold nanoparticle. Anal Biochem 527:4–12

    Article  CAS  PubMed  Google Scholar 

  12. da Silva W, Brett CMA (2020) Novel biosensor for acetylcholine based on acetylcholinesterase/poly (neutral red)–deep eutectic solvent/Fe2O3 nanoparticle modified electrode. J Electroanal Chem 872:114050

    Article  Google Scholar 

  13. Liu C, Huang J, Wang L (2018) Electrochemical synthesis of a nanocomposite consisting of carboxy-modified multi-walled carbon nanotubes, polythionine and platinum nanoparticles for simultaneous voltammetric determination of myricetin and rutin. Microchim Acta 185(9):414

    Article  Google Scholar 

  14. Pauliukaite R, Ghica ME, Barsan MM, Brett CMA (2010) Phenazines and polyphenazines in electrochemical sensors and biosensors. Anal Lett 43(10–11):1588–1608

    Article  CAS  Google Scholar 

  15. Ganesh PS, Swamy BK (2015) Sodium dodecyl sulphate/poly (brilliant blue)/multi walled carbon nanotube modified carbon paste electrode for the voltammetric resolution of dopamine in the presence of ascorbic acid and uric acid. J Anal Bioanal Tech 6(6):1

    Google Scholar 

  16. da Silva W, Ghica ME, Brett CMA (2019) Novel nanocomposite film modified electrode based on poly(brilliant cresyl blue)-deep eutectic solvent/carbon nanotubes and its biosensing applications. Electrochim Acta 317:766–777

    Article  Google Scholar 

  17. Ding M, Zhou Y, Liang X, Zou H, Wang Z, Wang M, Ma J (2016) An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J Electroanal Chem 763:25–31

    Article  CAS  Google Scholar 

  18. da Silva W, Ghica ME, Brett CMA (2019) Choline oxidase inhibition biosensor based on poly (brilliant cresyl blue)–deep eutectic solvent/carbon nanotube modified electrode for dichlorvos organophosphorus pesticide. Sens Actuat B-Chem 298:126862

    Article  Google Scholar 

  19. Barsan MM, Pifferi V, Falciola L, Brett CMA (2016) New CNT/poly (brilliant green) and CNT/poly (3, 4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Anal Chim Acta 927:35–45

    Article  CAS  PubMed  Google Scholar 

  20. da Silva W, Ghica ME, Brett CMA (2020) Biotoxic trace metal ion detection by enzymatic inhibition of a glucose biosensor based on a poly (brilliant green)–deep eutectic solvent/carbon nanotube modified electrode. Talanta 208:120427

    Article  PubMed  Google Scholar 

  21. He S, He P, Zhang X, Zhang X, Li C, Dong F, Leia H, Liu D (2017) Poly (bromocresol green)/carbon quantum dots modified electrode for the simultaneous electrochemical determination of guanine and adenine. J Electroanal Chem 806:158–165

    Article  CAS  Google Scholar 

  22. Shrestha S, Mascarenhas RJ, D’Souza OJ, Satpati AK, Mekhalif Z, Dhason A, Martis P (2016) Amperometric sensor based on multi-walled carbon nanotube and poly (bromocresol purple) modified carbon paste electrode for the sensitive determination of L-tyrosine in food and biological samples. J Electroanal Chem 778:32–40

    Article  CAS  Google Scholar 

  23. Hosu O, Barsan MM, Cristea C, Săndulescu R, Brett CMA (2017) Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Microchim Acta 184(10):3919–3927

    Article  CAS  Google Scholar 

  24. Gorle DB, Kulandainathan MA (2016) Electrochemical sensing of dopamine at the surface of a dopamine grafted graphene oxide/poly(methylene blue) composite modified electrode. RSC Adv 6(24):19982–19991

    Article  CAS  Google Scholar 

  25. Barsan MM, Toledo CT, Brett CMA (2015) New electrode architectures based on poly(methylene green) and functionalized carbon nanotubes: characterization and application to detection of acetaminophen and pyridoxine. J Electroanal Chem 736:8–15

    Article  CAS  Google Scholar 

  26. Lin KC, Syu JJ, Chen SM (2015) A hybrid nanocomposite of poly(neutral red) and hemoglobin codeposited on multi-walled carbon nanotubes for determination of hydrogen peroxide. Int J Electrochem Sci 10:6886–6899

    CAS  Google Scholar 

  27. Shervedani RK, Amini A (2015) Preparation of graphene/Nile blue nanocomposite: application for oxygen reduction reaction and biosensing. Electrochim Acta 173:354–363

    Article  CAS  Google Scholar 

  28. Yang S, Ding S, Li L, Sun Q, Yang J, Cao Q (2017) Hydrogen peroxide biosensor based on graphene-toluidine blue/HRP-poly (toluidine blue). Int J Electrochem Sci 12:10838–10849

    Article  CAS  Google Scholar 

  29. Khan AAP, Khan A, Alam MM, Asiri AM, Uddin J, Rahman MM (2019) SDBS-functionalized MWCNT/poly (o-toluidine) nanowires modified glassy carbon electrode as a selective sensing platform for Ce3+ in real samples. J Mol Liq 279:392–399

    Article  CAS  Google Scholar 

  30. Wang F, Gong W, Wang L, Chen Z (2015) Enhanced amperometric response of a glucose oxidase and horseradish peroxidase based bienzyme glucose biosensor modified with a film of polymerized toluidine blue containing reduced graphene oxide. Microchim Acta 182(11–12):1949–1956

    Article  CAS  Google Scholar 

  31. Dai J, Deng D, Yuan Y, Zhang J, Deng F, He S (2016) Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly (toluidine blue). Microchim Acta 183(5):1553–1561

    Article  CAS  Google Scholar 

  32. Palakollu VN, Karpoormath R (2018) Enhanced electrochemical sensing of dopamine based on carboxylic acid functionalized multi-walled carbon nanotubes/poly (toluidine blue) composite. Synth Met 245:87–95

    Article  CAS  Google Scholar 

  33. Li X, Kan X (2019) A boronic acid carbon nanodots/poly (thionine) sensing platform for the accurate and reliable detection of NADH. Bioelectrochem 130:107344

    Article  CAS  Google Scholar 

  34. Ghica ME, Ferreira GM, Brett CMA (2015) Poly (thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electrochem 19(9):2869–2881

    Article  CAS  Google Scholar 

  35. Pandey SK, Sachan S, Singh SK (2019) Electrochemically reduced graphene oxide modified with electrodeposited thionine and horseradish peroxidase for hydrogen peroxide sensing and inhibitive measurement of chromium. Mater Sci Technol 2(3):676–686

    Google Scholar 

  36. Liu Y, Song N, Ma Z, Zhou K, Gan Z, Gao Y, Tang S, Chen C (2019) Synthesis of a poly (N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone. Mater Chem Phys 223:548–556

    Article  CAS  Google Scholar 

  37. Dalkıran B, Fernandes IPG, David M, Brett CMA (2020) Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing. Microchim Acta 187(11):1–11

    Article  Google Scholar 

  38. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  39. Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon 34:279–281

    Article  CAS  Google Scholar 

  40. Ghica ME, Brett CMA (2010) The influence of carbon nanotubes and polyazine redox mediators on the performance of amperometric enzyme biosensors. Microchim Acta 170:257–265

    Article  CAS  Google Scholar 

  41. Narang J, Malhotra N, Singhal C, Bhatia R, Kathuria V, Jain M (2017) Graphene nanoflakes on transparent glass electrode sensor for electrochemical sensing of anti-diabetic drug. Bioproc Biosystems Eng 40(4):537–548

    Article  CAS  Google Scholar 

  42. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323(1–4):1–5

    Article  CAS  Google Scholar 

  43. Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. Mod Electron Mater 2(4):95–105

    Article  Google Scholar 

  44. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes–a review. J Mater 2(1):37–54

    Google Scholar 

  45. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17(10):2161

    Article  Google Scholar 

  46. Salavagione HJ, Díez-Pascual AM, Lázaro E, Vera S, Gómez-Fatou MA (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2(35):14289–14328

    Article  CAS  Google Scholar 

  47. Shareena TPD, McShan D, Dasmahapatra AK, Tchounwou PB (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett 10(3):53

    Article  Google Scholar 

  48. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    Article  CAS  Google Scholar 

  49. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2014) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  Google Scholar 

  50. Bairagi PK, Verma N (2018) Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: a novel non-enzymatic electrochemical biosensor for cholesterol. J Electroanal Chem 814:134–143

    Article  CAS  Google Scholar 

  51. Pandey I, Bairagi PK, Verma N (2018) Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: an electrochemical sensor for creatinine. Sens Actuat B-Chem 277:562–570

    Article  CAS  Google Scholar 

  52. Tomé LIN, Brett CMA (2019) Polymer/iron oxide nanoparticle modified glassy carbon electrodes for the enhanced detection of epinephrine. Electroanal 31(4):704–710

    Article  Google Scholar 

  53. Liu T, Luo Y, Wang W, Kong L, Zhu J, Tan L (2015) Non-enzymatic detection of hydrogen peroxide based on Fenton-type reaction on poly(azure A)-chitosan/Cu modified electrode. Electrochim Acta 182:742–750

    Article  CAS  Google Scholar 

  54. Liu T, Luo Y, Zhu J, Kong L, Wang W, Tan L (2016) Non-enzymatic detection of glucose using poly (azure A)-nickel modified glassy carbon electrode. Talanta 156:134–140

    Article  PubMed  Google Scholar 

  55. Jimenez-Perez R, Gonzalez-Rodriguez J, González-Sánchez MI, Gómez-Monedero B, Valero E (2019) Highly sensitive H2O2 sensor based on poly (azure A)-platinum nanoparticles deposited on activated screen printed carbon electrodes. Sens Actuat B-Chem 298:126878

    Article  CAS  Google Scholar 

  56. Ahammad AS, Shaikh AA, Jessy NJ, Akter T, Al Mamun A, Bakshi PK (2015) Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto a gold nanoparticles-adsorbed poly (brilliant cresyl blue) film. J Electrochem Soc 162(3):B52–B56

    Article  CAS  Google Scholar 

  57. Sangeetha NS, Narayanan SS (2019) Amperometric H2O2 sensor based on gold nanoparticles/poly(celestine blue) nanohybrid film. SN Appl Sci 1(7):732

    Article  Google Scholar 

  58. Koyun O, Sahin Y (2018) Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics 24(10):3187–3197

    Article  CAS  Google Scholar 

  59. Saritha D, Gupta VK, Reddy AVB, Agarwal S, Moniruzzaman M, Anitha K, Madhavi G (2019) Development of a simple, selective, stable and ultrasensitive poly (safranine/nano NiO) modified carbon paste electrode for selective detection of rutin in buckwheat and green tea samples. Int J Electrochem Sci 14:10093–10110

    Article  CAS  Google Scholar 

  60. Chai R, Kan X (2019) Au-polythionine nanocomposites: a novel mediator for bisphenol A dual-signal assay based on imprinted electrochemical sensor. Anal Bioanal Chem 411(17):3839–3847

    Article  CAS  PubMed  Google Scholar 

  61. Huang Q, Zhao Z, Nie D, Jiang K, Guo W, Fan K, Zhang Z, Meng J, Wu Y, Han Z (2019) Molecularly imprinted poly (thionine)-based electrochemical sensing platform for fast and selective ultratrace determination of patulin. Anal Chem 91(6):4116–4123

    Article  CAS  PubMed  Google Scholar 

  62. Yang S, Bai C, Teng Y, Zhang J, Peng J, Fang Z, Xu W (2019) Study of horseradish peroxidase and hydrogen peroxide bi-analyte sensor with boronate affinity-based molecularly imprinted film. Can J Chem 97(12):833–839

    Article  CAS  Google Scholar 

  63. Huang J, Xu W, Gong Y, Weng S, Lin X (2016) Selective and reliable electrochemical sensor based on polythionine/AuNPs composites for epinephrine detection in serum. Int J Electrochem Sci 11(10):8193–8203

    Article  CAS  Google Scholar 

  64. Chen B, Zhang Y, Lin L, Chen H, Zhao M (2020) Au nanoparticles@ metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: preparation, characterization, and electrochemical detection of tyrosine. J Electroanal Chem 863:114052

    Article  CAS  Google Scholar 

  65. Zhao C, Jiang Z, Cai X, Lin L, Lin X, Weng S (2015) Ultrasensitive and reliable dopamine sensor based on polythionine/AuNPs composites. J Electroanal Chem 748:16–22

    Article  CAS  Google Scholar 

  66. da Silva W, Queiroz AC, Brett CMA (2020) Nanostructured poly(phenazine)/Fe2O3 nanoparticle film modified electrodes formed by electropolymerization in ethaline-deep eutectic solvent. Microscopic and electrochemical characterization. Electrochim Acta:347–136284

  67. da Silva W, Queiroz AC, Brett CMA (2020) Poly (methylene green)-Ethaline deep eutectic solvent/Fe2O3 nanoparticle modified electrode electrochemical sensor for the antibiotic dapsone. Sens Actuat B-Chem 128747

  68. Dalkiran B, Brett CMA (2021) A novel nanostructured poly(thionine)-deep eutectic solvent/CuO nanoparticle film modified disposable pencil graphite electrode for determination of acetaminophen in the presence of ascorbic acid. Anal Bioanal Chem 413:1149–1157

    Article  CAS  PubMed  Google Scholar 

  69. Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6(3):491–506

    Article  CAS  Google Scholar 

  70. El-Zahry MR, Ali MF (2019) Enhancement effect of reduced graphene oxide and silver nanocomposite supported on poly brilliant blue platform for ultra-trace voltammetric analysis of rosuvastatin in tablets and human plasma. RSC Adv 9(13):7136–7146

    Article  CAS  Google Scholar 

  71. Bollella P, Sharma S, Cass AEG, Antiochia R (2019) Microneedle-based biosensor for minimally-invasive lactate detection. Biosens Bioelectron 123:152–159

    Article  CAS  PubMed  Google Scholar 

  72. Topçu E, Dağcı K, Alanyalıoğlu M (2016) Free-standing graphene/poly (methylene blue)/AgNPs composite paper for electrochemical sensing of NADH. Electroanal 28(9):2058–2069

    Article  Google Scholar 

  73. Bollella P, Sharma S, Cass AEG, Antiochia R (2019) Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanal 31(2):374–382

    Article  CAS  Google Scholar 

  74. Sahin M, Ayranci E (2015) Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochim Acta 166:261–270

    Article  CAS  Google Scholar 

  75. Devi CL, Narayanan SS (2019) Poly(amido amine) dendrimer/silver nanoparticles/multi-walled carbon nanotubes/poly (neutral red)-modified electrode for electrochemical determination of paracetamol. Ionics 25(5):2323–2335

    Article  CAS  Google Scholar 

  76. Bilgi M, Ayranci E (2018) Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J Electroanal Chem 823:588–592

    Article  CAS  Google Scholar 

  77. Mazar FM, Alijanianzadeh M, Molaeirad A, Heydari P (2017) Development of novel glucose oxidase immobilization on graphene/gold nanoparticles/poly neutral red modified electrode. Process Biochem 56:71–80

    Article  CAS  Google Scholar 

  78. Chang Z, Gao Z (2018) Study of the enzyme-free glucose biosensor based on Ni2+@ poly (neutral red) hybrid nanocomposites (Ni2+@PNR HN)/MWCNTs/Nafion modified electrode. Int J Electrochem Sci 13:1754–1772

    Article  CAS  Google Scholar 

  79. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185(7):358

    Article  Google Scholar 

  80. Zhang H, Han J, Yang B (2010) Structural fabrication and functional modulation of nanoparticle–polymer composites. Adv Funct Mater 20(10):1533–1550

    Article  CAS  Google Scholar 

  81. Ravi Shankaran D, Uehara N, Kato T (2003) A metal dispersed sol-gel biocomposite amperometric glucose biosensor. Biosens Bioelectron 18:721–728

    Article  CAS  PubMed  Google Scholar 

  82. Dalkiran B, Erden PE, Kiliç E (2017) Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7, 7, 8, 8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta 167:286–295

    Article  CAS  PubMed  Google Scholar 

  83. Ran G, Chen X, Xia Y (2017) Electrochemical detection of serotonin based on a poly (bromocresol green) film and Fe3O4 nanoparticles in a chitosan matrix. RSC Adv 7(4):1847–1851

    Article  CAS  Google Scholar 

  84. Tomé LIN, Baião V, da Silva W, Brett CMA (2018) Deep eutectic solvents for the production and application of new materials. Appl Mater Today 10:30–50

    Article  Google Scholar 

  85. Abad-Gil L, Procopio JR, Brett CMA (2021) Binary and ternary deep eutectic solvent mixtures: influence on methylene blue electropolymerisation. Electrochem Commun 124:106967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B. Dalkiran thankfully acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK 2219) for a postdoctoral fellowship.

Funding

The authors thank Fundação para a Ciência e a Tecnologia (FCT), Portugal, project PTDC/QEQ-QAN/2201/2014, in the framework of Project 3599-PPCDT, co-financed by the European Community Fund FEDER), and CEMMPRE, project UIDB/EMS/00285/2020 by FEDER funds through the program COMPETE – Programa Operacional Factores de Competitividade, and by national funds through FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. A. Brett.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkiran, B., Brett, C.M.A. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: a review. Microchim Acta 188, 178 (2021). https://doi.org/10.1007/s00604-021-04821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04821-1

Keywords

Navigation