Skip to main content
Log in

Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Conducting polymer/noble metal nanoparticle (CP/NMNP) composites have made a history of sorts since its inception in the field of electrochemical research, which resulted to be an impetus for scientists to indulge and explore the opportunities it can unleash. This review throws light on the synergic effects and the enhancement in the electrocatalytic activity on dispersing noble metal particles on conducting polymers. This review aids the readers to analyse the electrochemical sensing efficiency of CP/NMNP composites, and provides a platform for the researchers to engineer and develop CP/NMNP composite materials for electrochemical sensing. This work also draws the attention of the readers to the application of NMNP (Ag, Au, Pt, Pd, Ir, and Ru) dispersed on CPs [polyaniline (PANI), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)] and their composites with other materials like carbon nanotubes (CNTs), graphene, zeolites, and peptide nanotubes (PNTs) for sensing of various analytes.

Graphic abstract

This review draws the attention of the readers to the application of NMNP (Ag, Au, Pt, Pd, Ir and Ru) dispersed on CPs (polyaniline (PANI), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)) and their composites with other materials like carbon nanotubes (CNTs), graphene, zeolites, and peptide nanotubes (PNTs) for sensing of various analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yamamoto, T., Fukumoto, H., Koizumi, T.A.: Metal complexes of π-conjugated polymers. J. Inorg. Organomet. 19, 3–11 (2009)

    Article  CAS  Google Scholar 

  2. Ramakrishnan, S.: From a laboratory curiosity to the market place. Resonance. 16, 1254–1265 (2011)

    Article  Google Scholar 

  3. Shegefti, S., Mehdinia, A., Shemirani, F.: Preconcentration of cobalt(II) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS. Microchim. Acta. 183, 1963–1970 (2016)

    Article  CAS  Google Scholar 

  4. Rijo, R., Bhavya, S., Agnus, T.M., Louis, G., Sudhakar, Y.N., Varghese, A.: Review—electrocatalytic oxidation of alcohols using chemically modified electrodes: a review. J. Electrochem. Soc. 167, 136508 (2020)

    Article  Google Scholar 

  5. Jiang, C., Chen, H., Yu, C., Zhang, S., Liu, B., Kong, J.: Preparation of the Pt nanoparticles decorated poly(N-acetylaniline)/MWNTs nanocomposite and its electrocatalytic oxidation toward formaldehyde. Electrochim. Acta. 54, 1134–1140 (2009)

    Article  CAS  Google Scholar 

  6. Akshaya, K.B., Vinod, T.P., Nidhin, M., Varghese, A., George, L.: PEDOT decorated with PtIr nanoclusters on carbon fiber paper toward electrocatalytic reduction of a hypertensive drug Olmesartan medoxomil. J. Electrochem. Soc. 165, B582–B595 (2018)

    Article  CAS  Google Scholar 

  7. Reddy, K.R., Lee, K.P., Gopalan, A.I.: Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf. A Physicochem. Eng. Asp. 320, 49–56 (2008)

    Article  CAS  Google Scholar 

  8. Reddy, K.R., Jeong, H.M., Lee, Y., Raghu, A.V.: Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J. Polym. Sci. Part A Polym. Chem. 48, 1477–1484 (2010)

    Article  CAS  Google Scholar 

  9. Zhang, Y.P., Lee, S.H., Reddy, K.R., Gopalan, A.I., Lee, K.P.: Synthesis and characterization of core-shell SiO2nanoparticles/poly(3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)

    Article  CAS  Google Scholar 

  10. Inagaki, C.S., Oliveira, M.M., Zarbin, A.J.G.: Direct and one-step synthesis of polythiophene/gold nanoparticles thin films through liquid/liquid interfacial polymerization. J. Colloid Interface Sci. 516, 498–510 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Mathew, A.T., Akshaya, K.B., Vinod, T.P., Varghese, A., George, L.: TEMPO-mediated aqueous phase electrooxidation of pyridyl methanol at palladium-decorated PANI on carbon fiber paper electrode. Chem. Select. 5, 3283–3294 (2020)

    CAS  Google Scholar 

  12. Ferreira, V.C., Melato, A.I., Silva, A.F., Abrantes, L.M.: Attachment of noble metal nanoparticles to conducting polymers containing sulphur-preparation conditions for enhanced electrocatalytic activity. Electrochim. Acta. 56, 3567–3574 (2011)

    Article  CAS  Google Scholar 

  13. Akshaya, K.B., Anitha, V., Nidhin, M., Sudhakar, Y.N., Louis, G.: Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 217, 121028 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. Park, E., Kwon, O.S., Park, S.J., Lee, J.S., You, S., Jang, J.: One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J. Mater. Chem. 22, 1521–1526 (2012)

    Article  CAS  Google Scholar 

  15. Akshaya, K.B., Varghese, A., Sudhakar, Y.N., George, L.: Electrocatalytic oxidation of morin on electrodeposited Ir-PEDOT nanograins. Food Chem. 270, 78–85 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Han, J., Wang, M., Hu, Y., Zhou, C., Guo, R.: Conducting polymer-noble metal nanoparticle hybrids: synthesis mechanism application. Prog. Polym. Sci. 70, 52–91 (2017)

    Article  CAS  Google Scholar 

  17. Reddy, K.R., Sin, B.C., Ryu, K.S., Kim, J.C., Chung, H., Lee, Y.: Conducting polymerfunctionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth. Met. 159, 595–603 (2009)

    Article  CAS  Google Scholar 

  18. Awuzie, C.I.: Conducting polymers in materials today. Proceedings 4, 5721–5726 (2017)

    Google Scholar 

  19. Ishida, T., Kuroda, K., Kinoshita, N., Minagawa, W., Haruta, M.: Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2. J. Colloid Interface Sci. 323, 105–111 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J.: Electrochemical biosensing based on noble metal nanoparticles. Microchim. Acta. 177, 245–270 (2012)

    Article  CAS  Google Scholar 

  21. Wang, F., Hu, S.: Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim. Acta 165, 1–22 (2009)

    Article  CAS  Google Scholar 

  22. Ferreira, V.C., Melato, A.I., Silva, A.F., Abrantes, L.M.: Conducting polymers with attached platinum nanoparticles towards the development of DNA biosensors. Electrochem Commun. 13, 993–996 (2011)

    Article  CAS  Google Scholar 

  23. Kung, C.C., Lin, P.Y., Buse, F.J., Xue, Y., Yu, X., Dai, L., Liu, C.C.: Preparation and characterization of three dimensional graphene foam supported platinum–ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosens. Bioelectron. 52, 1–7 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Cao, X., Wang, N., Jia, S., Guo, L., Li, K.: Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens. Bioelectron. 39, 226–230 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Bagheri, S., Ramimoghadam, D., Yousefi, A.T., Hamid, S.B.A.: Synthesis, characterization and electrocatalytic activity of silver doped-titanium dioxide nanoparticles. Int. J. Electrochem. Sci. 10, 3088–3097 (2015)

    CAS  Google Scholar 

  26. Ali, S.M., Farooq, W.A., Baig, M.R., Shar, M.A., Atif, M., Alghamdi, S.S., Algarawi, M.S., Ur-Rehman, N., Aziz, M.H.: Structural and optical properties of pure and Ag doped ZnO thin films obtained by sol gel spin coating technique. Mater. Sci. Pol. 33, 601–605 (2015)

    Article  Google Scholar 

  27. Naim, N.M., Abdullah, H., Hamid, A.A.: Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection. Electron. Mater. Lett. 15, 70–79 (2019)

    Article  CAS  Google Scholar 

  28. Lu, Z., Dai, W., Liu, B., Mo, G., Zhang, J., Ye, J., Ye, J.: One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications. J. Colloid Interface Sci. 525, 86–96 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. Kaladevi, G., Wilson, P., Pandian, K.: Silver nanoparticle–decorated PANI/reduced graphene oxide for sensing of hydrazine in water and inhibition studies on microorganism. Ionics (Kiel). 26, 3123–3133 (2020)

    Article  CAS  Google Scholar 

  30. Mahmoudian, M.R., Basirun, W.J., Alias, Y.B.: Sensitive dopamine biosensor based on polypyrrole—coated palladium silver nanospherical composites. Ind. Eng. Chem. Res. 55, 6943–6951 (2016)

    Article  CAS  Google Scholar 

  31. Lee, D., Lee, Y.J., Eun, Y.G., Lee, G.J.: Label-free detection of salivary pepsin using gold nanoparticle/polypyrrole nanocoral modified screen-printed electrode. Sensors (Switzerland) 18, 1685 (2018)

    Article  Google Scholar 

  32. Feng, X., Mao, C., Yang, G., Hou, W., Zhu, J.J.: Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. Langmuir 22, 4384–4389 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Zhang, J., Song, W., Liu, Z.: Controllable synthesis of conducting polypyrrole nanostructures. J. Phys. Chem. B. 110, 1158–1165 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Adhikari, A., De, S., Rana, D., Nath, J., Ghosh, D., Dutta, K., Chakraborty, S., Chattopadhyay, S., Chakraborty, M., Chattopadhyay, D.: Selective sensing of dopamine by sodium cholate tailored polypyrrole-silver nanocomposite. Synth. Met. 260, 116296 (2020)

    Article  CAS  Google Scholar 

  35. Yang, X., Zhu, Z., Dai, T., Lu, Y.: Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun. 26, 1736–1740 (2005)

    Article  CAS  Google Scholar 

  36. Papi, M.A.P., Caetano, F.R., Bergamini, M.F., Marcolino-Junior, L.H.: Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination. Mater. Sci. Eng. C. 75, 88–94 (2017)

    Article  Google Scholar 

  37. Destrée, C., Nagy, J.B.: Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv. Colloid Interface Sci. 123, 353–367 (2006)

    Article  PubMed  Google Scholar 

  38. Sun, L., Shi, Y., Li, B., Chu, L., He, Z., Liu, J.: Synthesis and characterization of polypyrrole/Au nanocomposites by microemulsion polymerization. Colloids Surf. A Physicochem. Eng. Asp. 397, 8–11 (2012)

    Article  CAS  Google Scholar 

  39. Feifel, S.C., Kapp, A., Lisdat, F.: Protein multilayer architectures on electrodes for analyte detection. In: Biosensors based on aptamers and enzymes, pp. 253–298. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  40. Crespilho, F.N., Zucolotto, V., Oliveira, O.N., Jr., Nart, F.C.: Electrochemistry of layer-by-layer films: a review. Int. J. Electrochem. Sci. 1, 194–214 (2006)

    CAS  Google Scholar 

  41. Tsakova, V., Ivanov, S., Lange, U., Stoyanova, A., Lyutov, V., Mirsky, V.M.: Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition. Pure Appl. Chem. 83, 345–358 (2011)

    Article  CAS  Google Scholar 

  42. Xu, L., Zhu, Y., Tang, L., Yang, X., Li, C.: Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. J. Appl. Polym. Sci. 109, 1802–1807 (2008)

    Article  CAS  Google Scholar 

  43. Kayani, Z.N., Iqbal, M., Riaz, S., Zia, R., Naseem, S.: Fabrication and properties of zinc oxide thin film prepared by sol–gel dip coating method. Mater. Sci. Pol. 33, 515–520 (2015)

    Article  CAS  Google Scholar 

  44. Zou, L., Li, Y., Cao, S., Ye, B.: Gold nanoparticles/polyaniline Langmuir–Blodgett Film modified glassy carbon electrode as voltammetric sensor for detection of epinephrine and uric acid. Talanta 117, 333–337 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. Deshmukh, M.A., Kang, B.C., Ha, T.J.: Non-enzymatic electrochemical glucose sensors based on polyaniline/reduced-graphene-oxide nanocomposites functionalized with silver nanoparticles. J. Mater. Chem. C. 8, 5112–5123 (2020)

    Article  CAS  Google Scholar 

  46. Tamer, U., Seçkin, A.I., Temur, E., Torul, H.: Fabrication of biosensor based on polyaniline/gold nanorod composite. Int. J. Electrochem. 2011, 1–7 (2011)

    Article  Google Scholar 

  47. Tiwari, I., Gupta, M., Pandey, C.M., Mishra, V.: Gold nanoparticle decorated graphene sheet-polypyrrole based nanocomposite: Its synthesis, characterization and genosensing application. Dalton Trans. 44, 15557–15566 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Nia, P.M., Meng, W.P., Alias, Y.: Hydrogen peroxide sensor: uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Appl. Surf. Sci. 357, 1565–1572 (2015)

    Article  CAS  Google Scholar 

  49. Narang, J., Chauhan, N., Rani, P., Pundir, C.S.: Construction of an amperometric TG biosensor based on AuPPy nanocomposite and poly (indole-5-carboxylic acid) modified Au electrode. Bioprocess Biosyst Eng. 36, 425–432 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. Shi, W., Liu, C., Song, Y., Lin, N., Zhou, S., Cai, X.: An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosens. Bioelectron. 38, 100–106 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. Ramezani, H., Azizi, S.N., Hosseini, S.R.: NaY zeolite as a platform for preparation of Ag nanoparticles arrays in order to construction of H2O2 sensor. Sens. Actuators B Chem. 248, 571–579 (2017)

    Article  CAS  Google Scholar 

  52. Tsierkezos, N.G.: Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K J. Solut. Chem. 36, 289–302 (2007)

    Article  CAS  Google Scholar 

  53. Ciric-Marjanovic, G.: Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013)

    Article  CAS  Google Scholar 

  54. Joice, E.K., Varghese, A., Sudhakar, Y.N., Ganesh, B., Selvaraj, J.: Poly (aniline) decorated with nano cactus platinum on carbon fiber paper and its electrocatalytic behavior toward toluene oxidation. J. Electrochem. Soc. 165, H399–H406 (2018)

    Article  CAS  Google Scholar 

  55. Yari, A., Saidikhah, M.: Trithiane silver-nanoparticles-decorated polyaniline nanofibers as sensing element for electrochemical determination of Adenine and Guanine in DNA. J. Electroanal. Chem. 783, 288–294 (2016)

    Article  CAS  Google Scholar 

  56. Norouzi, P., Larijani, B., Bidhendi, M.E., Eshraghi, M., Ebrahimi, M.: A sensitive biosensor for acrylamide detection based on polyaniline and au nanoparticles using FFT admittance voltammetry. Anal. Bioanal. Electrochem. 10, 18–32 (2018)

    CAS  Google Scholar 

  57. Chu, X., Zhao, X., Zhou, Y., Wang, Y., Han, X., Zhou, Y., Ma, J., Wang, Z., Huang, H., Xu, Z., Yan, C.: An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nanoenergy 76, 105179 (2020)

    CAS  Google Scholar 

  58. Sun, Q., Park, M.C., Deng, Y.: Studies on one-dimensional polyaniline (PANI) nanostructures and the morphological evolution. Mater. Chem. Phys. 110, 276–279 (2008)

    Article  CAS  Google Scholar 

  59. Bhadra, S., Khastgir, D., Singha, N.K., Lee, J.H.: Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. (Oxford). 34, 783–810 (2009)

    Article  CAS  Google Scholar 

  60. Tsele, T.P., Adekunle, A.S., Fayemi, O.E., Ebenso, E.E.: Electrochemical detection of epinephrine using polyaniline nanocomposite films doped with TiO2 and RuO2 nanoparticles on multi-walled carbon nanotube. Electrochim. Acta. 243, 331–348 (2017)

    Article  CAS  Google Scholar 

  61. Hsu, S.C., Cheng, H.T., Wu, P.X., Weng, C.J., Santiago, K.S., Yeh, J.M.: Electrochemical sensor constructed using a carbon paste electrode modified with mesoporous silica encapsulating PANI chains decorated with GNPs for detection of ascorbic acid. Electrochim. Acta. 238, 246–256 (2017)

    Article  CAS  Google Scholar 

  62. Wang, A.L., Xu, H., Feng, J.X., Ding, L.X., Tong, Y.X., Li, G.R.: Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J. Am. Chem. Soc. 29, 10703–10709 (2013)

    Article  Google Scholar 

  63. Zhang, D., Yang, Z., Li, P., Pang, M., Xue, Q.: Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nanoenergy 65, 103974 (2019)

    CAS  Google Scholar 

  64. Yan, X.B., Han, Z.J., Yang, Y., Tay, B.K.: NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sens. Actuators B Chem. 123, 107–113 (2007)

    Article  CAS  Google Scholar 

  65. Hien, H.T., Giang, H.T., Van Hieu, N., Trung, T., Van Tuan, C.: Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors. Sens. Actuators B Chem. 249, 348–356 (2017)

    Article  CAS  Google Scholar 

  66. Kshirasagar, K.J., Markad, U.S., Saha, A., Sharma, K.K.K., Sharma, G.K.: Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications. Mater Res. Express. 4, 025015 (2017)

    Article  Google Scholar 

  67. Duan, C., Bai, W., Zheng, J.: Non-enzymatic sensors based on a glassy carbon electrode modified with Au nanoparticles/polyaniline/SnO2 fibrous nanocomposites for nitrite sensing. New J. Chem. 42, 11516–11524 (2018)

    Article  CAS  Google Scholar 

  68. Chen, X., Guo, B., Hu, P., Wang, Y.: A non-enzymatic hydrogen peroxide sensor based on gold nanoparticles/carbon nanotube/self-doped polyaniline hollow spheres. Electroanalysis 26, 1513–1521 (2014)

    Article  CAS  Google Scholar 

  69. Arshak, K., Adley, C., Moore, E., Cunniffe, C., Campion, M., Harris, J.: Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens. Actuators B Chem. 126, 226–231 (2007)

    Article  CAS  Google Scholar 

  70. Chen, X., Chen, Z., Zhu, J., Xu, C., Yan, W., Yao, C.: A novel H2O2 amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers. Bioelectrochemistry 82, 87–94 (2011)

    Article  CAS  PubMed  Google Scholar 

  71. Thinh, P.X., Kim, J.K.: Fabrication of honeycomb-patterned polyaniline composite films using chemically modified polyaniline nanoparticles. Polymer (Guildf). 55, 5168–5177 (2014)

    Article  CAS  Google Scholar 

  72. Narang, J., Chauhan, N., Jain, P., Pundir, C.S.: Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int. J. Biol. Macromol. 50, 672–678 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. Kausaite-Minkstimiene, A., Mazeiko, V., Ramanaviciene, A., Ramanavicius, A.: Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor. Biosens. Bioelectron. 26, 790–797 (2010)

    Article  CAS  PubMed  Google Scholar 

  74. Chauhan, N., Narang, J., Pundir, C.S.: Fabrication of multiwalled carbon nanotubes/polyaniline modified Au electrode for ascorbic acid determination. Analyst. 136, 1938–1945 (2011)

    Article  CAS  PubMed  Google Scholar 

  75. Zhai, D., Liu, B., Shi, Y., Pan, L., Wang, Y., Li, W., Zhang, R., Yu, G.: Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540–3546 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. Li, L., Wang, Y., Pan, L., Shi, Y., Cheng, W., Shi, Y., Yu, G.: A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 15, 1146–1151 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Chu, X., Huang, H., Zhang, H., Zhang, H., Gu, B., Su, H., Liu, F., Han, Y., Wang, Z., Chen, N., Yan, C.: Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochim. Acta. 301, 136–144 (2019)

    Article  CAS  Google Scholar 

  78. Sinha, A., Kalambate, P.K., Mugo, S.M., Kamau, P., Chen, J., Jain, R.: Polymer hydrogel interfaces in electrochemical sensing strategies: a review. Trends Anal. Chem. 118, 488–501 (2019)

    Article  Google Scholar 

  79. Giovanni, M., Poh, H.L., Ambrosi, A., Zhao, G., Sofer, Z., Šaněk, F., Khezri, B., Webster, R.D., Pumera, M.: Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale. 4, 5002–5008 (2012)

    Article  CAS  PubMed  Google Scholar 

  80. Saini, D., Chauhan, R., Solanki, P.R., Basu, T.: Gold-nanoparticle decorated graphene-nanostructured polyaniline nanocomposite-based bienzymatic platform for cholesterol sensing. ISRN Nanotechnol. 2012, 1–12 (2012)

    Article  Google Scholar 

  81. Fang, F.F., Choi, H.J., Ahn, W.S.: Electroactive response of mesoporous silica and its nanocomposites with conducting polymers. Compos. Sci. Technol. 69, 2088–2092 (2009)

    Article  CAS  Google Scholar 

  82. Weng, C.J., Hung, W.I., Peng, C.W., Chang, C.H., Chang, Y.H., Wei, Y., Chiu, K.C., Tang, S.J., Yeh, J.M.: Preparation of electroactive silica mesopores by encapsulating polyaniline chains into silica framework via nonsurfactant templating sol–gel route. J. Non Cryst. Solids. 357, 227–231 (2011)

    Article  CAS  Google Scholar 

  83. Pedroso, C.C.S., Junqueira, V., Rubinger, C.P.L., Martins, T.S., Faez, R.: Preparation, characterization and electrical conduction mechanism of polyaniline/ordered mesoporous silica composites. Synth. Met. 170, 11–18 (2013)

    Article  CAS  Google Scholar 

  84. Paleologos, E.K., Kontominas, M.G.: Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. J Chromatogr A. 1077, 128–135 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. Li, X., Yu, M., Chen, Z., Lin, X., Wu, Q.: A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sens. Actuator B Chem. 239, 874–882 (2017)

    Article  CAS  Google Scholar 

  86. Chowdhury, A.D., Gangopadhyay, R., De, A.: Highly sensitive electrochemical biosensor for glucose, DNA and protein using gold-polyaniline nanocomposites as a common matrix. Sens. Actuators B Chem. 190, 348–356 (2014)

    Article  CAS  Google Scholar 

  87. Kong, L., Lu, X., Bian, X., Zhang, W., Wang, C.: Accurately tuning the dispersity and size of palladium particles on carbon spheres and using carbon spheres/palladium composite as support for polyaniline in H2O2 electrochemical sensing. Langmuir 26, 5985–5990 (2010)

    Article  CAS  PubMed  Google Scholar 

  88. Deb, A.K., Das, S.C., Saha, A., Wayu, M.B., Marksberry, M.H., Baltz, R.J., Chusuei, C.C.: Ascorbic acid, acetaminophen, and hydrogen peroxide detection using a dendrimer-encapsulated Pt nanoparticle carbon nanotube composite. J. Appl. Electrochem. 46, 289–298 (2016)

    Article  CAS  Google Scholar 

  89. Ivanov, S., Lange, U., Tsakova, V., Mirsky, V.M.: Electrocatalytically active nanocomposite from palladium nanoparticles and polyaniline: oxidation of hydrazine. Sens. Actuator B Chem. 150, 271–278 (2010)

    Article  CAS  Google Scholar 

  90. Zeng, X., Zhang, Y., Du, X., Li, Y., Tang, W.: A highly sensitive glucose sensor based on a gold nanoparticles/polyaniline/multi-walled carbon nanotubes composite modified glassy carbon electrode. New J. Chem. 42, 11944–11953 (2018)

    Article  CAS  Google Scholar 

  91. Chauhan, N., Singh, A., Narang, J., Dahiya, S., Pundir, C.S.: Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes. Analyst. 137, 5113–5122 (2012)

    Article  CAS  PubMed  Google Scholar 

  92. Xu, L., Zhu, Y., Yang, X., Li, C.: Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater. Sci. Eng. C. 29, 1306–1310 (2009)

    Article  CAS  Google Scholar 

  93. Miao, Z., Wang, P., Zhong, A., Yang, M., Xu, Q., Hao, S., Hu, X.: Development of a glucose biosensor based on electrodeposited gold nanoparticles-polyvinylpyrrolidone-polyaniline nanocomposites. J. Electroanal. Chem. 756, 153–160 (2015)

    Article  CAS  Google Scholar 

  94. Chu, W., Zhou, Q., Li, S., Zhao, W., Li, N., Zheng, J.: Oxidation and sensing of ascorbic acid and dopamine on self-Assembled gold nanoparticles incorporated within polyaniline film. Appl. Surf. Sci. 353, 425–432 (2015)

    Article  CAS  Google Scholar 

  95. Salahandish, R., Ghaffarinejad, A., Naghib, S.M., Niyazi, A., Majidzadeh-A, K., Janmaleki, M., Sanati-Nezhad, A.: Sandwich-structured nanoparticles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule. Sci. Rep. 9, 1–11 (2019)

    Article  CAS  Google Scholar 

  96. Guo, Z., Luo, X., Li, Y., Li, D., Zhao, Q., Li, M., Ma, C., Zhao, Y.: Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid based on reduced graphene oxide-Ag/PANI modified glassy carbon electrode. Chem. Res. Chin. Univ. 33, 507–512 (2017)

    Article  CAS  Google Scholar 

  97. Salahandish, R., Ghaffarinejad, A., Naghib, S.M., Niyazi, A., Majidzadeh-A, K., Janmaleki, M., Sanati-Nezhad, A.: Silver nanoparticle decorated polyaniline-zeolite nanocomposite material based non-enzymatic electrochemical sensor for nanomolar detection of lindane. RSC Adv. 5, 57657–57665 (2015)

    Article  Google Scholar 

  98. Zhang, H., Huang, F., Xu, S., Xia, Y., Huang, W., Li, Z.: Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem. Commun. 30, 46–50 (2013)

    Article  Google Scholar 

  99. Stoyanova, A., Ivanov, S., Tsakova, V., Bund, A.: Au nanoparticle-polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim. Acta. 56, 3693–3699 (2011)

    Article  CAS  Google Scholar 

  100. Salahandish, R., Ghaffarinejad, A., Omidinia, E., Zargartalebi, H., Majidzadeh-A, K., Naghib, S.M., Sanati-Nezhad, A.: Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens. Bioelectron. 120, 129–136 (2018)

    Article  CAS  PubMed  Google Scholar 

  101. Bai, L., Yan, B., Chai, Y., Yuan, R., Yuan, Y., Xie, S., Jiang, L., He, Y.: An electrochemical aptasensor for thrombin detection based on direct electrochemistry of glucose oxidase using a functionalized graphene hybrid for amplification. Analyst. 138, 6595–6599 (2013)

    Article  CAS  PubMed  Google Scholar 

  102. Vural, T., Yaman, Y.T., Ozturk, S., Abaci, S., Denkbas, E.B.: Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode. J. Colloid Interface Sci. 510, 318–326 (2018)

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, X., Sheng, Q., Zheng, J.: Synthesis of palladium nanocubes decorated polypyrrole nanotubes and its application for electrochemical sensing. J. Iran. Chem. Soc. 16, 1061–1069 (2019)

    Article  CAS  Google Scholar 

  104. Qian, T., Yu, C., Zhou, X., Wu, S., Shen, J.: Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection. Sens. Actuators B Chem. 193, 759–763 (2014)

    Article  CAS  Google Scholar 

  105. Loguercio, L.F., Alves, C.C., Thesing, A., Ferreira, J.: Enhanced electrochromic properties of a polypyrrole-indigo carmine-gold nanoparticles nanocomposite. Phys. Chem. Chem. Phys. 17, 1234–1240 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. Salunke, R.S., Kasar, C.K., Bangar, M.A., Chavan, P.G., Shirale, D.J.: Electrodeposition of gold nanoparticles decorated single polypyrrole nanowire for arsenic detection in potable water: a chemiresistive sensor device. J. Mater. Sci. Mater. Electron. 28, 14672–14677 (2017)

    Article  CAS  Google Scholar 

  107. Li, L., Wang, X., Liu, G., Wang, Z., Wang, F., Guo, X., Wen, Y., Yang, H.: Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application. Nanotechnology. 26, 445704 (2015)

    Article  PubMed  Google Scholar 

  108. Sharma, A., Kumar, A.: Study of structural and electro-catalytic behaviour of amperometric biosensor based on chitosan/polypyrrole nanotubes-gold nanoparticles nanocomposites. Synth. Met. 220, 551–559 (2016)

    Article  CAS  Google Scholar 

  109. Li, Y., Wang, P., Wang, L., Lin, X.: Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens. Bioelectron. 22, 3120–3125 (2007)

    Article  CAS  PubMed  Google Scholar 

  110. Ramanavicius, A., Ramanaviciene, A., Malinauskas, A.: Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim. Acta 51, 6025–6037 (2006)

    Article  CAS  Google Scholar 

  111. Haghighi, B., Tabrizi, M.A.: Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles. Colloids Surf. B Biointerfaces. 103, 566–571 (2013)

    Article  CAS  PubMed  Google Scholar 

  112. Radhakrishnan, S., Sumathi, C., Umar, A., Kim, S.J., Wilson, J., Dharuman, V.: Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens. Bioelectron. 47, 133–140 (2013)

    Article  CAS  PubMed  Google Scholar 

  113. Wilson, J., Radhakrishnan, S., Sumathi, C., Dharuman, V.: Polypyrrole-polyaniline-Au (PPy-PANi-Au) nano composite films for label-free electrochemical DNA sensing. Sens. Actuators B Chem. 171, 216–222 (2012)

    Article  Google Scholar 

  114. Yan, Z., Yi, H., Wang, L., Zhou, X., Yan, R., Zhang, D., Wang, S., Su, L., Zhou, S.: Fluorescent aptasensorfor ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B. Spectrochim. Acta A Mol. Biomol. Spectrosc. 221, 117203 (2019)

    Article  CAS  PubMed  Google Scholar 

  115. Zang, S., Liu, Y., Lin, M., Kang, J., Sun, Y., Lei, H.: A dual amplified electrochemical immunosensor for ofloxacin: polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim. Acta. 90, 246–253 (2013)

    Article  CAS  Google Scholar 

  116. Wang, X., Dong, J., Ming, H., Ai, S.: Sensing of glycoprotein via a biomimetic sensor based on molecularly imprinted polymers and graphene-Au nanoparticles. Analyst. 138, 1219–1225 (2013)

    Article  CAS  PubMed  Google Scholar 

  117. Yu, N., Mugo, S.M.: A flexible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta 204, 602–606 (2019)

    Article  PubMed  Google Scholar 

  118. Deiminiat, B., Razavipanah, I., Rounaghi, G.H., Arbab-Zavar, M.H.: A novel electrochemical imprinted sensor for acetylsalicylic acid based on polypyrrole, sol-gel and SiO2@Au core-shell nanoparticles. Sens. Actuators B Chem. 244, 785–795 (2017)

    Article  CAS  Google Scholar 

  119. Qin, X., Lu, W., Luo, Y., Chang, G., Sun, X.: Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochem. Commun. 13, 785–787 (2011)

    Article  CAS  Google Scholar 

  120. Xing, L., Rong, Q., Ma, Z.: Non-enzymatic electrochemical sensing of hydrogen peroxide based on polypyrrole/platinum nanocomposites. Sens. Actuators B Chem. 221, 242–247 (2015)

    Article  CAS  Google Scholar 

  121. Bian, X., Lu, X., Jin, E., Kong, L., Zhang, W., Wang, C.: Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta 81, 813–818 (2010)

    Article  CAS  PubMed  Google Scholar 

  122. Nia, P.M., Lorestani, F., Meng, W.P., Alias, Y.: A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers-silver nanoparticles decorated reduced graphene oxide nano composites. Appl. Surf. Sci. 332, 648–656 (2015)

    Article  Google Scholar 

  123. Şenel, M.: Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film. Mater. Sci. Eng. C. 48, 287–293 (2015)

    Article  Google Scholar 

  124. Xue, K., Zhou, S., Shi, H., Feng, X., Xin, H., Song, W.: A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite. Sens. Actuators B Chem. 203, 412–416 (2014)

    Article  CAS  Google Scholar 

  125. Yang, Y., Asiri, A.M., Du, D., Lin, Y.: Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst. 139, 3055–3060 (2014)

    Article  CAS  PubMed  Google Scholar 

  126. Xu, G., Adeloju, S.B., Wu, Y., Zhang, X.: Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Anal. Chim. Acta. 755, 100–107 (2012)

    Article  CAS  PubMed  Google Scholar 

  127. Alagappan, M., Immanuel, S., Sivasubramanian, R., Kandaswamy, A.: Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab. J. Chem. 13, 2001–2010 (2020)

    Article  CAS  Google Scholar 

  128. German, N., Ramanavicius, A., Ramanaviciene, A.: Amperometric glucose biosensor based on electrochemically deposited gold nanoparticles covered by polypyrrole. Electroanalysis 29, 1267–1277 (2017)

    Article  CAS  Google Scholar 

  129. Cesarino, I., Galesco, H.V., Machado, S.A.: Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. Mater. Sci. Eng. C. 40, 49–54 (2014)

    Article  CAS  Google Scholar 

  130. Selvarajan, S., Suganthi, A., Rajarajan, M.: A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode. Ultrason. Sonochem. 44, 319–330 (2018)

    Article  CAS  PubMed  Google Scholar 

  131. Tan, C., Zhao, J., Sun, P., Zheng, W., Cui, G.: Gold nanoparticle decorated polypyrrole/graphene oxide nanosheets as a modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. New J. Chem. 44, 4916–4926 (2020)

    Article  CAS  Google Scholar 

  132. Babu, T.S., Varadarajan, D., Murugan, G., Ramachandran, T., Nair, B.G.: Gold nanoparticle-polypyrrole composite modified TiO2 nanotube array electrode for the amperometric sensing of ascorbic acid. J. Appl. Electrochem. 42, 427–434 (2012)

    Article  Google Scholar 

  133. Vellaichamy, B., Ponniah, S.K., Prakash, P.: An in-situ synthesis of novel Au@NG-PPy nanocomposite for enhanced electrocatalytic activity toward selective and sensitive sensing of catechol in natural samples. Sens. Actuators B Chem. 253, 392–399 (2017)

    Article  CAS  Google Scholar 

  134. Saha, S., Sarkar, P., Turner, A.P.: Interference-free electrochemical detection of nanomolar dopamine using doped polypyrrole and silver nanoparticles. Electroanalysis 26, 2197–2206 (2014)

    Article  CAS  Google Scholar 

  135. Saljooqi, A., Shamspur, T., Mostafavi, A.: A sensitive electrochemical sensor based on graphene oxide nanosheets decorated by Fe3O4 @Au nanostructure stabilized on polypyrrole for efficient triclosan sensing. Electroanalysis 32, 1297–1303 (2020)

    Article  CAS  Google Scholar 

  136. Babakhanian, A., Kaki, S., Ahmadi, M., Ehzari, H., Pashabadi, A.: Development of α-polyoxometalate-polypyrrole-Au nanoparticles modified sensor applied for detection of folic acid. Biosens. Bioelectron. 60, 185–190 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. Akshaya, K.B., Varghese, A., Nidhin, M., George, L.: Amorphous Ru-Pi nanoclusters coated on Polypyrrole modified carbon fiber paper for non-enzymatic electrochemical determination of cholesterol. J Electrochem Soc. 166, B1016–B1027 (2019)

    Article  CAS  Google Scholar 

  138. Ghadimi, H., Mahmoudian, M.R., Basirun, W.J.: A sensitive dopamine biosensor based on ultra-thin polypyrrole nanosheets decorated with Pt nanoparticles. RSC Adv. 5, 39366–39374 (2015)

    Article  CAS  Google Scholar 

  139. Che, X., Yuan, R., Chai, Y., Ma, L., Li, W., Li, J.: Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-l-cysteine-gold-platinum nanoparticles in polypyrrole film. Microchim. Acta. 167, 159–165 (2009)

    Article  CAS  Google Scholar 

  140. Liu, X., Cheng, Z., Fan, H., Ai, S., Han, R.: Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim. Acta. 56, 6266–6270 (2011)

    Article  CAS  Google Scholar 

  141. Tertiş, M., Ciui, B., Suciu, M., Săndulescu, R., Cristea, C.: Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim. Acta. 258, 1208–1218 (2017)

    Article  Google Scholar 

  142. Tabrizi, M.A., Shamsipur, M., Mostafaie, A.: A high sensitive label-free immunosensor for the determination of human serum IgG using overoxidized polypyrrole decorated with gold nanoparticle modified electrode. Mater. Sci. Eng. C. 59, 965–969 (2016)

    Article  Google Scholar 

  143. Wang, F., Zhu, L., Zhang, J.: Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene-gold nanoparticles modified electrode. Sens. Actuators B Chem. 192, 642–647 (2014)

    Article  CAS  Google Scholar 

  144. Gao, Y.S., Xu, J.K., Lu, L.M., Zhu, X.F., Wang, W.M., Yang, T.T., Zhang, K.X., Yu, Y.F.: A label-free electrochemical immunosensor for carcinoembryonic antigen detection on a graphene platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticsle. RSC Adv. 5, 86910–86918 (2015)

    Article  CAS  Google Scholar 

  145. Liu, Z., Lu, B., Gao, Y., Yang, T., Yue, R., Xu, J., Gao, L.: Facile one-pot preparation of Pd-Au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection. RSC Adv. 6, 89157–89166 (2016)

    Article  CAS  Google Scholar 

  146. Jiang, F., Yue, R., Du, Y., Xu, J., Yang, P.: A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens. Bioelectron. 44, 127–131 (2013)

    Article  CAS  PubMed  Google Scholar 

  147. Yue, R., Wang, H., Bin, D., Xu, J., Du, Y., Lu, W., Guo, J.: Facile one-pot synthesis of Pd– PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation. J. Mater. Chem. A. 3, 1077–1088 (2015)

    Article  CAS  Google Scholar 

  148. Li, J.Y., Liu, Y., Shu, Q.W., Liang, J.M., Zhang, F., Chen, X.P., Deng, X.Y., Swihart, M.T., Tan, K.J.: One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33, 1043–1050 (2017)

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, W., Liu, P., Zhang, M., Huang, J., Cheng, F., Wang, L.: A highly sensitive morin sensor based on PEDT-Au/rGO nanocomposites modified glassy carbon electrode. RSC Adv. 7, 47781–47788 (2017)

    Article  CAS  Google Scholar 

  150. Wong, A., Santos, A.M., Fatibello-Filho, O.: Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B Chem. 255, 2264–2273 (2018)

    Article  CAS  Google Scholar 

  151. Lin, P., Chai, F., Zhang, R., Xu, G., Fan, X., Luo, X.: Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim. Acta. 183, 1235–1241 (2016)

    Article  CAS  Google Scholar 

  152. Mercante, L.A., Facure, M.H., Sanfelice, R.C., Migliorini, F.L., Mattoso, L.H., Correa, D.S.: One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Appl. Surf. Sci. 407, 162–170 (2017)

    Article  CAS  Google Scholar 

  153. Wang, X., Wen, Y., Lu, L., Xu, J., Zhang, L., Yao, Y., He, H.: A novel l-cysteine electrochemical sensor using sulfonated graphene-poly(3,4-ethylenedioxythiophene) composite film decorated with gold nanoparticles. Electroanalysis 26, 648–655 (2014)

    Article  CAS  Google Scholar 

  154. Pananon, P., Sriprachuabwong, C., Wisitsoraat, A., Chuysinuan, P., Tuantranont, A., Saparpakorn, P., Dechtrirat, D.: A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine. RSC Adv. 8, 12724–12732 (2018)

    Article  CAS  Google Scholar 

  155. Sadanandhan, N.K., Cheriyathuchenaaramvalli, M., Devaki, S.J., Menon, A.R.: PEDOT-reduced graphene oxide-silver hybrid nanocomposite modified transducer for the detection of serotonin. J. Electroanal. Chem. 794, 244–253 (2017)

    Article  CAS  Google Scholar 

  156. Gao, L., Yue, R., Xu, J., Liu, Z., Chai, J.: Pt-PEDOT/rGO nanocomposites: one-pot preparation and superior electrochemical sensing performance for caffeic acid in tea. J. Electroanal. Chem. 816, 14–20 (2018)

    Article  CAS  Google Scholar 

  157. Jia, H., Xu, J., Lu, L., Yu, Y., Zuo, Y., Tian, Q., Li, P.: Three-dimensional Au nanoparticles/nano-poly(3,4-ethylene dioxythiophene)-graphene aerogel nanocomposite: a high-performance electrochemical immunosensing platform for prostate specific antigen detection. Sens. Actuators B Chem. 260, 990–997 (2018)

    Article  CAS  Google Scholar 

  158. Sharma, A., Kumar, A., Khan, R.: A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly (3, 4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B1. Synth. Met. 235, 136–144 (2018)

    Article  CAS  Google Scholar 

  159. Guo, Y., Wang, Y., Liu, S., Yu, J., Wang, H., Cui, M., Huang, J.: Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode interface. Analyst. 140, 551–559 (2015)

    Article  CAS  PubMed  Google Scholar 

  160. Zelikman, E., Narkis, M., Siegmann, A., Valentini, L., Kenny, J.M.: Polyaniline/multiwalled carbon nanotube systems: dispersion of CNT and CNT/PANI interaction. Polym. Eng. Sci. 48, 1872–1877 (2008)

    Article  CAS  Google Scholar 

  161. Dresselhaus, M.S., Endo, M.: Relation of carbon nanotubes to other carbon materials. Carbon Nanotubes. 80, 11–28 (2007)

    Article  Google Scholar 

  162. Mugo, S.M., Lu, W.: Modified stainless steel microneedle electrode for polyphenolics detection. Anal. Bioanal. Chem. 412, 1–10 (2020)

    Google Scholar 

  163. Li, H., Li, M., Guo, W., Di, H., Fang, C., Yang, B.: Electrochemical application of titanium dioxide nanoparticle/gold nanoparticle/multiwalled carbon nanotube nanocomposites for nonenzymatic detection of ascorbic acid. J. Solid State Electrochem. 18, 477–485 (2014)

    Article  CAS  Google Scholar 

  164. Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., Gong, J.R.: Controllable N-doping of graphene”. Nano Lett. 10, 4975–4980 (2010)

    Article  CAS  PubMed  Google Scholar 

  165. Xiong, B., Zhou, Y., Zhao, Y., Wang, J., Chen, X., O’Hayre, R., Shao, Z.: The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon N. Y. 52, 181–192 (2013)

    Article  CAS  Google Scholar 

  166. Qiu, J.D., Shi, L., Liang, R.P., Wang, G.C., Xia, X.H.: Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem. - A Eur. J. 18, 7950–7959 (2012)

    Article  CAS  Google Scholar 

  167. Wang, L., Wu, T., Du, S., Pei, M., Guo, W., Wei, S.: High performance supercapacitors based on ternary graphene/Au/polyaniline (PANI) hierarchical nanocomposites. RSC Adv. 6, 1004–1011 (2016)

    Article  CAS  Google Scholar 

  168. Begum, H., Ahmed, M.S., Jeon, S.: δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction. Electrochim. Acta. 296, 235–242 (2019)

    Article  CAS  Google Scholar 

  169. Sun, C.L., Tang, J.S., Brazeau, N., Wu, J.J., Ntais, S., Yin, C.W., Chou, H.L., Baranova, E.A.: Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation. Electrochim. Acta. 162, 282–289 (2015)

    Article  CAS  Google Scholar 

  170. Abdolmaleki, A., Mohamadi, Z., Ensafi, A.A., Atashbar, N.Z., Rezaei, B.: Efficient and stable HER electrocatalyst using Pt-nanoparticles@ poly (3, 4-ethylene dioxythiophene) modified sulfonated graphene nanocomposite. Int. J. Hydrog. 43, 8323–8332 (2018)

    Article  CAS  Google Scholar 

  171. Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., Liu, B.: Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494–6497 (2011)

    Article  CAS  Google Scholar 

  172. Noroozifar, M., Khorasani-Motlagh, M., Parizi, M.B., Akbari, R.: Highly sensitive electrochemical detection of dopamine and uric acid on a novel carbon nanotube-modified ionic liquid-nanozeolite paste electrode. Ionics 19, 1317–1327 (2013)

    Article  CAS  Google Scholar 

  173. Senthilkumar, S., Saraswathi, R.: Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: optimization and field measurements. Sens. Actuators B Chem. 141, 65–75 (2009)

    Article  CAS  Google Scholar 

  174. Castillo, J.J., Svendsen, W.E., Rozlosnik, N., Escobar, P., Martínez, F., Castillo-León, J.: Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst. 138, 1026–1031 (2013)

    Article  CAS  PubMed  Google Scholar 

  175. Cho, E.C., Choi, J.W., Lee, M., Koo, K.K.: Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 313, 95–99 (2008)

    Article  Google Scholar 

  176. Lakshmanan, A., Zhang, S., Hauser, C.A.: Short self-assembling peptides as building blocks for modern nanodevices. Trends Biotechnol. 30, 155–165 (2012)

    Article  CAS  PubMed  Google Scholar 

  177. Habibi, N., Kamaly, N., Memic, A., Shafiee, H.: Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today. 11, 41–60 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Slocik, J.M., Stone, M.O., Naik, R.R.: Synthesis of gold nanoparticles using multifunctional peptides. Small. 1, 1048–1052 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors Gurumurthy Hegde acknowledges DST-Nanomission, Govt of India for providing grant with file number SR/NM/NT-1026/2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anitha Varghese or Gurumurthy Hegde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, A., Benny, L., Cherian, A.R. et al. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J Nanostruct Chem 11, 1–31 (2021). https://doi.org/10.1007/s40097-020-00372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00372-8

Keywords

Navigation