Skip to main content

Advertisement

Log in

Graphene nanoflakes on transparent glass electrode sensor for electrochemical sensing of anti-diabetic drug

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Metformin (Mf) plays a major role in controlling insulin level of individuals at risk of developing diabetes mellitus. Overdose of Mf can cause lactic acidosis, diarrhoea, cough, or hoarseness, etc. These particulars point out the identification for selective and sensitive methods of Mf determination. In the present work, graphene nanoflakes-polymethylene blue (GNF-PMB) nano-composites were developed onto fluorine-doped tin oxide (SnO2/F) coated glass substrates for electrochemical sensing of Mf using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The developed sensor shows quick response time (10 s), linearity as 10–103 µM, LOD (0.1 nM), and good shelf life (10 weeks). Attempts have been made to utilize this electrode for estimation of Mf in urine samples. Configured as a highly responsive, reproducible Mf sensor, it combines the electrical properties of GNF and stable electron transfer of PMB. The newly developed Mf sensor presents a promising candidate in point-of-care diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137:25–33

    Article  CAS  Google Scholar 

  2. Lu J, Randell E, Han Y, Adeli K, Krahn J, Meng QH (2011) Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin Biochem 44:307–311

    Article  CAS  Google Scholar 

  3. Knowler WC, Barrett-Connor E, Fowle SE (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  CAS  Google Scholar 

  4. Ratner RE (2006) An update on the diabetes prevention program. Endocr Pract 12:20–24

    Article  Google Scholar 

  5. Musi N et al (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081

    Article  CAS  Google Scholar 

  6. Tian XJ, Song JF (2007) Catalytic action of copper (II) ion on electrochemical oxidation of metformine 1200 and voltammetric determination of metformin in pharmaceuticals. J Pharm Biomed Anal 44:1192–1196

    Article  CAS  Google Scholar 

  7. Chiavarino B, Crestoni ME, Marzio AD, Fornarini S (1998) Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. J Chromatogr B Biomed Sci Appl 706:269–277

    Article  CAS  Google Scholar 

  8. Hamdan II, Bani Jaber AK, Abushoffa AM (2010) Development and validation of a stability indicating capillary electrophoresis method for the determination of metformin hydrochloride in tablets. J Pharm Biomed Anal 53:1254–1257

    Article  CAS  Google Scholar 

  9. Calatayud JM, Falco PC, Marti MCP (1985) Metformin and moroxidine determination with Cu (II). Anal Lett 18:1381–1390

    Article  CAS  Google Scholar 

  10. Umapathi P, Ayyappan J, Quine SD (2012) Quantitative determination of metformin hydrochloride in tablet formulation containing croscarmellose sodium as disintegrant by HPLC and UV spectrophotometry. Trop J Pharm Res 11:107–116

    Article  CAS  Google Scholar 

  11. Feng SY, Lai EPC, Zlotorzynska ED, Sadeghi S (2004) Molecularly imprinted solid-phase extraction for the screening of antihyperglycemic biguanide. J Chromatogr A 1027:155–160

    Article  CAS  Google Scholar 

  12. Habib IHI, Kamel MS (2003) Near infra-red reflectance spectroscopic determination of metformin in tablets. Talanta 60:185–190

    Article  CAS  Google Scholar 

  13. Sohrabi MR, Kamali N, Khakpour M (2011) Simultaneous spectrophotometric determination of metformin hydrochloride and glibenclamide in binary mixtures using combined discrete and continuous wavelet transforms. Anal Sci 27:1037–1041

    Article  CAS  Google Scholar 

  14. Singhal C, Malhotra N, Chauhan N, Narang S, Pundir CS, Narang J (2016) Hierarchical electrodeposition of methylene blue on ZnO nanocrystals thin films layered on SnO2/F electrode for in vitro sensing of anti-thalassemic drug. Mater Sci Eng C 62:596–604

    Article  CAS  Google Scholar 

  15. Narang J, Singhal C, Malhotra N, Narang S, Pn AK, Gupta R, Kansal R, Pundir CS (2016) Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nano-composites. Biosens Bioelectron 86:566–574

    Article  CAS  Google Scholar 

  16. Singhal C, Malhotra N, Pundir CS, Gaud D, Narang J (2016) An enzyme free vitamin C augmented sensing with different ZnO morphologies on SnO2/F transparent glass electrode: a comparative study. Mater Sci Eng C 69:769–779

    Article  CAS  Google Scholar 

  17. Parlak O, Turner APF, Tiwari A (2014) On/off switchable zipper-like bioelectronics on a graphene interface. Adv Mater 26(3):482–486

    Article  CAS  Google Scholar 

  18. Tiwari A (2012). Intelligent nanomaterials, 2nd edn. Wiley, New York

  19. Neto AHC, Guinea F, Peres N, Novoselov K, Geim A (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  20. Parlak O, Turner APF, Tiwari A (2015) pH-induced on/off-switchable graphene bioelectronics. J Mater Chem B 3:7434–7439

    Article  CAS  Google Scholar 

  21. Lai YC et al (2013) Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J Mater Chem C 1:552

    Article  CAS  Google Scholar 

  22. Abergel DSL, Apalkov V, Berashevich J, Zieler K, Chakraborty T (2010) Properties of graphene: a theoretical perspective. Adv Phys 59:261–482

    Article  CAS  Google Scholar 

  23. Hunter TB, Tyler PS, Smyrl WH, White HS (1987) Impedance analysis of poly (vinylferrocene) films. J Electrochem Soc 134(9):2198–2240

    Article  CAS  Google Scholar 

  24. Gabrielli C, Haas O, Takenouti H (1987) Impedance analysis of electrodes modified with a reversible redox polymer film. J Appl Electrochem 17:82–90

    Article  CAS  Google Scholar 

  25. Wang Y, Zhu G, Wang E (1997) Electrochemical behavior of FAD at a gold electrode studied by electrochemical quartz crystal microbalance. Anal Chim Acta 338:97–101

    Article  CAS  Google Scholar 

  26. Mutyala S, Mathiyarasu J (2015) Preparation of graphene nanoflakes and its application for detection of hydrazine. Sens Act B 210:692–699

    Article  CAS  Google Scholar 

  27. Skrzypek S, Mirceski V, Ciesielski W, Sokołowski A, Zakrzewski R (2007) Direct determination of metformin in urine by adsorptive catalytic square-wave voltammetry. J Pharm Biomed Anal 45(2):275–281

    Article  CAS  Google Scholar 

  28. Khaled E, Kamel SM, Hassan HM, Aboul-Enein HY (2011) Cyclodextrin-based dextromethorphan potentiometric sensors. J Electroanal Chem 661(1):239–244

    Article  CAS  Google Scholar 

  29. Blanco Jerez LM, García-Pérez UM, Zambrano-Robledo P, Hernández-Moreira J (2014) Carbon Paste electrode modified with BiVO4 to sense metformin. Int J Electrochem Sci 9:4643–4652

    Google Scholar 

Download references

Acknowledgements

The present work was supported by one of the authors (Jagriti Narang) by SERB, Department of Science and Technology (DST), (Grant Number SERB/LS-962/2012) India. Authors are highly thankful to Dr. N. Vijyan, Sr. Scientist, NPL, New Delhi, for providing X-ray diffraction facility. Thanks to all scientists referenced throughout the paper whose valuable work has guided the way through to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagriti Narang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narang, J., Malhotra, N., Singhal, C. et al. Graphene nanoflakes on transparent glass electrode sensor for electrochemical sensing of anti-diabetic drug. Bioprocess Biosyst Eng 40, 537–548 (2017). https://doi.org/10.1007/s00449-016-1719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1719-1

Keywords

Navigation